Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 39, Problem 39.60P
To determine
The estimate of the difference between the actual kinetic energy and 1 2 m u 2
.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a) Check all of the following that are correct statements, where E stands for ymc². Read each statement very carefully to make sure that it is exactly correct.
O At speeds close to the speed of light, kinetic energy is approximately equal to (1/2)mv².
O The energy principle can be written AEsys
Wsurr.
%3D
O The definition of work is W = |I.
%3D
O The definition K = E - mc² is valid even for speeds near the speed of light.
O The definition of work is W = .
O The definition of work is W = FxAx + F,AY + F;Az.
%3D
O The energy principle can be written Esys,f = Esys,i + Wsurr
(b) An object with mass 120 kg moved in outer space. When it was at location its speed was 18 m/s. A single constant force N acted on the object while the object moved to location m. What is the speed of the object at this final location?
final speed
m/s
%3D
I need help with d,e and f only
a.An atwoods machine consists of two blocks, A (m=1.3 kg) and B (m=8.7kg). Block B is released from rest at a height of 1.3 meters above the floor, while Block A began on the floor. What is the total energy of the system just before being released.
b. Assuming there is negligible friction, how fast is Block B moving just before hitting the ground
c. Now lets assume there is friction. Suppose block B actually reaches the floor with a speed of 0.23 m/sec. How much energy was dissipated by friction
Chapter 39 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 39 - Which observer in Figure 38.1 sees the balls...Ch. 39 - A baseball pitcher with a 90-mi/h fastball throws...Ch. 39 - Suppose the observer O on the train in Figure 38.6...Ch. 39 - A crew on a spacecraft watches a movie that is two...Ch. 39 - Suppose astronauts are paid according to the...Ch. 39 - You are packing for a trip to another star. During...Ch. 39 - You are observing a spacecraft moving away from...Ch. 39 - You are driving on a freeway at a relativistic...Ch. 39 - The following pairs of energiesparticle 1: E, 2E;...Ch. 39 - (i) Does the speed of an electron have an upper...
Ch. 39 - A spacecraft zooms past the Earth with a constant...Ch. 39 - As a car heads down a highway traveling at a speed...Ch. 39 - A spacecraft built in the shape of a sphere moves...Ch. 39 - An astronaut is traveling in a spacecraft in outer...Ch. 39 - You measure the volume of a cube at rest to be V0....Ch. 39 - Two identical clocks are set side by side and...Ch. 39 - Prob. 39.8OQCh. 39 - Which of the following statements are fundamental...Ch. 39 - A distant astronomical object (a quasar) is moving...Ch. 39 - In several cases, a nearby star has been found to...Ch. 39 - Prob. 39.2CQCh. 39 - A train is approaching yon at very high speed as...Ch. 39 - List three ways our day-to-day lives would change...Ch. 39 - Prob. 39.5CQCh. 39 - Prob. 39.6CQCh. 39 - Prob. 39.7CQCh. 39 - Prob. 39.8CQCh. 39 - Give a physical argument that shows it is...Ch. 39 - Prob. 39.10CQCh. 39 - Prob. 39.11CQCh. 39 - (i) An object is plated at a position p f from a...Ch. 39 - With regard to reference frames, how does general...Ch. 39 - Two identical clocks are in the same house, one...Ch. 39 - The truck in Figure P39.1 is moving at a speed of...Ch. 39 - In a laboratory frame of reference, an observer...Ch. 39 - The speed of the Earth in its orbit is 29.8 km/s....Ch. 39 - Prob. 39.4PCh. 39 - Prob. 39.5PCh. 39 - A meterstick moving at 0.900c relative to the...Ch. 39 - Prob. 39.7PCh. 39 - A muon formed high in the Earths atmosphere is...Ch. 39 - How fast must a meterstick be moving if its length...Ch. 39 - An astronaut is traveling in a space vehicle...Ch. 39 - A physicist drives through a stop light. When he...Ch. 39 - A fellow astronaut passes by you in a spacecraft...Ch. 39 - A deep-space vehicle moves away from the Earth...Ch. 39 - For what value of does = 1.010 0? Observe that...Ch. 39 - A supertrain with a proper length of 100 m travels...Ch. 39 - The average lifetime of a pi meson in its own...Ch. 39 - An astronomer on the Earth observes a meteoroid in...Ch. 39 - A cube of steel has a volume of 1.00 cm3 and mass...Ch. 39 - A spacecraft with a proper length of 300 m passes...Ch. 39 - A spacecraft with a proper length of Lp passes by...Ch. 39 - A light source recedes from an observer with a...Ch. 39 - Review. In 1963, astronaut Gordon Cooper orbited...Ch. 39 - Police radar detects the speed of a car (Fig....Ch. 39 - The identical twins Speedo and Goslo join a...Ch. 39 - An atomic clock moves at 1 000 km/h for 1.00 h as...Ch. 39 - Prob. 39.26PCh. 39 - A red light flashes at position xR = 3.00 m and...Ch. 39 - Shannon observes two light pulses to be emitted...Ch. 39 - A moving rod is observed to have a length of =...Ch. 39 - A rod moving with a speed v along the horizontal...Ch. 39 - Keilah, in reference frame S, measures two events...Ch. 39 - Figure P38.21 shows a jet of material (at the...Ch. 39 - An enemy spacecraft moves away from the Earth at a...Ch. 39 - A spacecraft is launched from the surface of the...Ch. 39 - Prob. 39.35PCh. 39 - Calculate the momentum of an electron moving with...Ch. 39 - Prob. 39.37PCh. 39 - Prob. 39.38PCh. 39 - Prob. 39.39PCh. 39 - Prob. 39.40PCh. 39 - Prob. 39.41PCh. 39 - Prob. 39.42PCh. 39 - An unstable particle at rest spontaneously breaks...Ch. 39 - Prob. 39.44PCh. 39 - Prob. 39.45PCh. 39 - Protons in an accelerator at the Fermi National...Ch. 39 - A proton moves at 0.950c. Calculate its (a) rest...Ch. 39 - (a) Find the kinetic energy of a 78.0-kg...Ch. 39 - A proton in a high-energy accelerator moves with a...Ch. 39 - Prob. 39.50PCh. 39 - The total energy of a proton is twice its rest...Ch. 39 - Prob. 39.52PCh. 39 - When 1.00 g of hydrogen combines with 8.00 g of...Ch. 39 - In a nuclear power plain, the fuel rods last 3 yr...Ch. 39 - The power output of the Sun is 3.85 1026 W. By...Ch. 39 - Prob. 39.56PCh. 39 - Prob. 39.57PCh. 39 - Prob. 39.58PCh. 39 - The rest energy of an electron is 0.511 MeV. The...Ch. 39 - Prob. 39.60PCh. 39 - A pion at rest (m = 273me) decays to a muon (m =...Ch. 39 - An unstable particle with mass m = 3.34 1027 kg...Ch. 39 - Prob. 39.63PCh. 39 - Prob. 39.64PCh. 39 - Review. A global positioning system (GPS)...Ch. 39 - Prob. 39.66APCh. 39 - The net nuclear fusion reaction inside the Sun can...Ch. 39 - Prob. 39.68APCh. 39 - A Doppler weather radar station broadcasts a pulse...Ch. 39 - An object having mass 900 kg and traveling at...Ch. 39 - An astronaut wishes to visit the Andromeda galaxy,...Ch. 39 - A physics professor on the Earth gives an exam to...Ch. 39 - An interstellar space probe is launched from...Ch. 39 - Prob. 39.74APCh. 39 - Prob. 39.75APCh. 39 - An object disintegrates into two fragments. One...Ch. 39 - The cosmic rays of highest energy are protons that...Ch. 39 - Spacecraft I. containing students taking a physics...Ch. 39 - Review. Around the core of a nuclear reactor...Ch. 39 - The motion of a transparent medium influences the...Ch. 39 - Prob. 39.81APCh. 39 - Prob. 39.82APCh. 39 - An alien spaceship traveling at 0.600c toward the...Ch. 39 - Prob. 39.84APCh. 39 - Prob. 39.85APCh. 39 - An observer in a coasting spacecraft moves toward...Ch. 39 - Prob. 39.87APCh. 39 - A particle with electric charge q moves along a...Ch. 39 - Prob. 39.89CPCh. 39 - Suppose our Sun is about to explode. In an effort...Ch. 39 - Owen and Dina are at rest in frame S. which is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A train moves along the tracks at a constant speed u. A woman on the train throws a ball of mass m straight ahead with a speed υ with respect to herself. (a) What is the kinetic energy gain of the ball as measured by a person on the train? (b) by a person standing by the railroad track? (c) How much work is done by the woman throwing he ball and (d) by the train?arrow_forward(a) What is the change in energy of a 1000-kg payload taken from rest at the surface of Earth and placed at rest on the surface of the Moon? (b) What would be the answer if the payload were taken from the Moon’s surface to Earth? Is this a reasonable calculation of the energy needed to move a payload back and forth?arrow_forwardA cat’s crinkle ball toy of mass 15 g is thrown straight up with an initial speed of 3 m/s. Assume in this problem that air drag is negligible. (a) What is the kinetic energy of the ball as it leaves the hand? (b) How much work is done by the gravitational force during the ball’s rise to its peak? (c) What is the change in the gravitational potential energy of the ball during the rise to its peak? (d) If the gravitational potential energy is taken to be zero at the point where it leaves your hand, what is the gravitational potential energy when it reaches the maximum height? (e) What if the gravitational potential energy is taken to be zero at the maximum height the ball reaches, what would the gravitational potential energy be when it leaves the hand? (f) What is the maximum height the ball reaches?arrow_forward
- The potential energy function for either one of the two atoms in a diatomic molecule is often approximated by U(x)=a/x12b/x6 where x is the distance between the atoms. (a) At what distance of separation does the potential energy have a local minimum (x=) ? What is the force on an atom at this separation? (c) How does the force vary with the separation distance?arrow_forwardThe diagram below shows the potential energy U of a particle (in joules) as a function of its position x. 4 D 2 A 1 -1 -2+ B A particle is initially at point B. It is moving to the right, and its total energy is 4 J. Which of the following most accurately describes the motion of the particle? Ignore friction. O The particle will move between A and C indefinitely. O The particle will eventually come to rest at B. O The particle will come to rest at C. O The particle will come to rest at D. O The particle will move past D and continue to the right. O Something else will happen.arrow_forwardA 1.8 kg book has been dropped from the top of the football stadium. Its speed is 4.8 m/s when it is 2.9meters above the ground.A. What is its total mechanical energy? (mechanical energy includes kinetic, gravitational potential, andelastic potential but not internal forms of energy such as thermal or chemical)B. What was the total mechanical energy of the book at the instant it was released?C. How high is the stadium?arrow_forward
- You throw a ball into the air. You let the ball go at a height of 1.5 m, and the ball is moving at a speed of 8 m/s when you let it go. The ball weighs 0.5 kg. a. What is the total energy of the ball when you let it go? b. Later, the ball is moving through the air at a speed of 4 m/s. How high is it off the ground? Assume energy is conserved. TT T Paragranh Arial 3 (12pt)arrow_forwardE2arrow_forwardA 0.60 kg rubber ball is thrown into the air. At a height of 30 m above the ground, it is travelling at 18 m/s. a. What is the ball's kinetic energy at 30 m above the ground? b. What is its gravitational potential energy relative to the ground at 30 m above the ground? c. What was the speed of the ball when it left the ground(assume h 0)? 山T回 étvarrow_forward
- The diagram below shows the potential energy U of a particle (in joules) as a function of its position æ. U 4 ir D 3 2 A 1 -1 -2+ B A particle is initially at point B. It is moving to the right, and its total energy is 4 J. Which of the following most accurately describes the motion of the particle? Ignore friction. O The particle will move between A and C indefinitely. The particle will eventually come to rest at B. The particle will come to rest at C. O The particle will come to rest at D. O The particle will move past D and continue to the right. O Something else will happen.arrow_forwardThe world's fastest humans can reach speeds of about 11 m/s. n order to increase his gravitational potential energy by an amount equal to his kinetic energy at full speed, how high would such a sprinter need to climb?arrow_forwardYou (60kg) and a friend (75 kg) are each in a sled sitting at the top of a snowy hill. You waxed your sleds in advance and friction is negligible (air resistance is also negligible). The top of the hill is 8 meters above the base. Which person, you or your friend, has the most potential energy at the top of the hill? How much? a. b. Which person, you or your friend, attains the greater speed at the bottom of the hill? What is that speed?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Mechanical work done (GCSE Physics); Author: Dr de Bruin's Classroom;https://www.youtube.com/watch?v=OapgRhYDMvw;License: Standard YouTube License, CC-BY