Concept explainers
A proton in a high-energy accelerator moves with a speed of c/2. Use the work-kinetic energy theorem to find the work required to increase its speed to (a) 0.750c and (b) 0.995c
(a)
The work required to increase the speed of the particle to
Answer to Problem 39.49P
The work required to increase the sped of the particle is
Explanation of Solution
Given Info: The initial speed of the particle is
The rest mass of the proton is
The speed of the light is
The final kinetic energy of the proton is,
Here,
The initial kinetic energy of the proton is,
Here,
Form the work energy theorem.
Substitute
Substitute
Substitute
Conclusion:
Therefore, the work required to increase the sped of the particle is
(b)
The work required to increase the speed of the particle to
Answer to Problem 39.49P
The work required to increase the sped of the particle is
Explanation of Solution
Given Info: The initial speed of the particle is
The rest mass of the proton is
The speed of the light is
The work done is,
Substitute
Substitute
Conclusion:
Therefore, the work required to increase the sped of the particle is
Want to see more full solutions like this?
Chapter 39 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- Questions 68-70 Four hundred millilitres (mL) of a strong brine solution at room temperature was poured into a measuring cylinder (Figure 1). A piece of ice of mass 100 g was then gently placed in the brine solution and allowed to float freely (Figure 2). Changes in the surface level of the liquid in the cylinder were then observed until all the ice had melted. Assume that the densities of water, ice and the brine solution are 1000 kg m-3, 900 kg m3 and 1100 kg m3, respectively. 68 Figure 1 400 400 Figure 2 1m² = 1x10 mL After the ice was placed in the brine solution and before any of it had melted, the level of the brine solution was closest to 485 mL. B 490 mL. C 495 mL. Displaced volume by ice. D 500 mL. weight of ice 69 The level of the brine solution after all the ice had melted was A 490 mL B 495 mL D 1100kg/m² = 909 xious mis 70 Suppose water of the same volume and temperature had been used instead of the brine solution. In this case, by the time all the ice had melted, the…arrow_forwardPlease showarrow_forwardNo chatgpt plsarrow_forward
- A bowling ball encounters a 0.760-m vertical rise on the way back to the ball rack, as the drawing illustrates. Ignore frictional losses and assume that the mass of the ball is distributed uniformly. The translational speed of the ball is 8.62 m/s at the bottom of the rise. Find the translational speed at the top. Number i 7.70 Units m/s 0.760 marrow_forwardTwo converging lenses A and B, with focal lengths =20cm and = 25cm, are placed 80cm apart, as shown in the figure (1). An object is placed 60cm in front of the first lens as shown in figure (2). Determine (a) the position, and (b) the magnification, of the final image formed by the combination of the two lenses.arrow_forwardMajor sources of error in refractionnof light experiment.arrow_forward
- Calculate the density of states for a free electron “gas” (know for 3D and how toalso calculate if modeling a 2D material (e.g. graphene).arrow_forwardNo chatgpt plsarrow_forwardWhen the lights of a car are switched on, an ammeter in series with them reads 7.29 A and a voltmeter connected across them reads 12.0 V (see the figure). When the electric starting motor is turned on, the ammeter reading drops to 5.70 A and the lights dim somewhat. If the internal resistance of the battery is 0.0549 and that of the ammeter is negligible, what are (a) the emf of the battery and (b) the current through the starting motor (in A) when the lights are on? S Lights Starting. motor E www Tarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning