Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 39, Problem 39.56P
To determine
The energy required to produce an electron and a positron by a gamma ray.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Suppose a cyclotron is operated at an oscillator frequency of 12 MHz ( MegaHertz) and has a radius of R=53 cm. A deuteron, an isotope of hydrogen, consisting of a proton and a neutron and therefore having the same charge as a proton is to be accelerated in the cyclotron. Its mass, m=3.24 x10-27 kg.
What is the resulting kinetic energy of the deuteron? Explain in not less than 3 sentences.
The very high speeds of alpha particles make them suitable for experiments that probe the nature of matter. A nucleus ejects an alpha particle with a kinetic energy of 8.3 MeV, a typical energy. How fast is the alpha particle moving?
Calculate the sum of the kinetic energies, in MeV, shared among the three outgoing alpha particles. The initial state is a proton and a boron-11 nucleus at rest, and the final state is three alpha particles with rest energy plus some total kinetic energy shared among the three alpha particles. The proton mass m=1.6726219E-27 kg, the boron-11 mass is 1.82814E-26 kg, and the mass of an alpha particle is 6.64648E-27kg. What is the kinetic energy of the 3 alpha particles in MeV?
I found that the proton’s initial kinetic energy is 2.5 MeV.
Chapter 39 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 39 - Which observer in Figure 38.1 sees the balls...Ch. 39 - A baseball pitcher with a 90-mi/h fastball throws...Ch. 39 - Suppose the observer O on the train in Figure 38.6...Ch. 39 - A crew on a spacecraft watches a movie that is two...Ch. 39 - Suppose astronauts are paid according to the...Ch. 39 - You are packing for a trip to another star. During...Ch. 39 - You are observing a spacecraft moving away from...Ch. 39 - You are driving on a freeway at a relativistic...Ch. 39 - The following pairs of energiesparticle 1: E, 2E;...Ch. 39 - (i) Does the speed of an electron have an upper...
Ch. 39 - A spacecraft zooms past the Earth with a constant...Ch. 39 - As a car heads down a highway traveling at a speed...Ch. 39 - A spacecraft built in the shape of a sphere moves...Ch. 39 - An astronaut is traveling in a spacecraft in outer...Ch. 39 - You measure the volume of a cube at rest to be V0....Ch. 39 - Two identical clocks are set side by side and...Ch. 39 - Prob. 39.8OQCh. 39 - Which of the following statements are fundamental...Ch. 39 - A distant astronomical object (a quasar) is moving...Ch. 39 - In several cases, a nearby star has been found to...Ch. 39 - Prob. 39.2CQCh. 39 - A train is approaching yon at very high speed as...Ch. 39 - List three ways our day-to-day lives would change...Ch. 39 - Prob. 39.5CQCh. 39 - Prob. 39.6CQCh. 39 - Prob. 39.7CQCh. 39 - Prob. 39.8CQCh. 39 - Give a physical argument that shows it is...Ch. 39 - Prob. 39.10CQCh. 39 - Prob. 39.11CQCh. 39 - (i) An object is plated at a position p f from a...Ch. 39 - With regard to reference frames, how does general...Ch. 39 - Two identical clocks are in the same house, one...Ch. 39 - The truck in Figure P39.1 is moving at a speed of...Ch. 39 - In a laboratory frame of reference, an observer...Ch. 39 - The speed of the Earth in its orbit is 29.8 km/s....Ch. 39 - Prob. 39.4PCh. 39 - Prob. 39.5PCh. 39 - A meterstick moving at 0.900c relative to the...Ch. 39 - Prob. 39.7PCh. 39 - A muon formed high in the Earths atmosphere is...Ch. 39 - How fast must a meterstick be moving if its length...Ch. 39 - An astronaut is traveling in a space vehicle...Ch. 39 - A physicist drives through a stop light. When he...Ch. 39 - A fellow astronaut passes by you in a spacecraft...Ch. 39 - A deep-space vehicle moves away from the Earth...Ch. 39 - For what value of does = 1.010 0? Observe that...Ch. 39 - A supertrain with a proper length of 100 m travels...Ch. 39 - The average lifetime of a pi meson in its own...Ch. 39 - An astronomer on the Earth observes a meteoroid in...Ch. 39 - A cube of steel has a volume of 1.00 cm3 and mass...Ch. 39 - A spacecraft with a proper length of 300 m passes...Ch. 39 - A spacecraft with a proper length of Lp passes by...Ch. 39 - A light source recedes from an observer with a...Ch. 39 - Review. In 1963, astronaut Gordon Cooper orbited...Ch. 39 - Police radar detects the speed of a car (Fig....Ch. 39 - The identical twins Speedo and Goslo join a...Ch. 39 - An atomic clock moves at 1 000 km/h for 1.00 h as...Ch. 39 - Prob. 39.26PCh. 39 - A red light flashes at position xR = 3.00 m and...Ch. 39 - Shannon observes two light pulses to be emitted...Ch. 39 - A moving rod is observed to have a length of =...Ch. 39 - A rod moving with a speed v along the horizontal...Ch. 39 - Keilah, in reference frame S, measures two events...Ch. 39 - Figure P38.21 shows a jet of material (at the...Ch. 39 - An enemy spacecraft moves away from the Earth at a...Ch. 39 - A spacecraft is launched from the surface of the...Ch. 39 - Prob. 39.35PCh. 39 - Calculate the momentum of an electron moving with...Ch. 39 - Prob. 39.37PCh. 39 - Prob. 39.38PCh. 39 - Prob. 39.39PCh. 39 - Prob. 39.40PCh. 39 - Prob. 39.41PCh. 39 - Prob. 39.42PCh. 39 - An unstable particle at rest spontaneously breaks...Ch. 39 - Prob. 39.44PCh. 39 - Prob. 39.45PCh. 39 - Protons in an accelerator at the Fermi National...Ch. 39 - A proton moves at 0.950c. Calculate its (a) rest...Ch. 39 - (a) Find the kinetic energy of a 78.0-kg...Ch. 39 - A proton in a high-energy accelerator moves with a...Ch. 39 - Prob. 39.50PCh. 39 - The total energy of a proton is twice its rest...Ch. 39 - Prob. 39.52PCh. 39 - When 1.00 g of hydrogen combines with 8.00 g of...Ch. 39 - In a nuclear power plain, the fuel rods last 3 yr...Ch. 39 - The power output of the Sun is 3.85 1026 W. By...Ch. 39 - Prob. 39.56PCh. 39 - Prob. 39.57PCh. 39 - Prob. 39.58PCh. 39 - The rest energy of an electron is 0.511 MeV. The...Ch. 39 - Prob. 39.60PCh. 39 - A pion at rest (m = 273me) decays to a muon (m =...Ch. 39 - An unstable particle with mass m = 3.34 1027 kg...Ch. 39 - Prob. 39.63PCh. 39 - Prob. 39.64PCh. 39 - Review. A global positioning system (GPS)...Ch. 39 - Prob. 39.66APCh. 39 - The net nuclear fusion reaction inside the Sun can...Ch. 39 - Prob. 39.68APCh. 39 - A Doppler weather radar station broadcasts a pulse...Ch. 39 - An object having mass 900 kg and traveling at...Ch. 39 - An astronaut wishes to visit the Andromeda galaxy,...Ch. 39 - A physics professor on the Earth gives an exam to...Ch. 39 - An interstellar space probe is launched from...Ch. 39 - Prob. 39.74APCh. 39 - Prob. 39.75APCh. 39 - An object disintegrates into two fragments. One...Ch. 39 - The cosmic rays of highest energy are protons that...Ch. 39 - Spacecraft I. containing students taking a physics...Ch. 39 - Review. Around the core of a nuclear reactor...Ch. 39 - The motion of a transparent medium influences the...Ch. 39 - Prob. 39.81APCh. 39 - Prob. 39.82APCh. 39 - An alien spaceship traveling at 0.600c toward the...Ch. 39 - Prob. 39.84APCh. 39 - Prob. 39.85APCh. 39 - An observer in a coasting spacecraft moves toward...Ch. 39 - Prob. 39.87APCh. 39 - A particle with electric charge q moves along a...Ch. 39 - Prob. 39.89CPCh. 39 - Suppose our Sun is about to explode. In an effort...Ch. 39 - Owen and Dina are at rest in frame S. which is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the speed of a beam of electrons (in SI units) that go undeflected when passing through crossed electric and magnetic fields of magnitude (5.07x10^0)x104 V/m and (4.270x10^0)x10-3 T, respectively? Give your answer to 3 sf.arrow_forwardAn electron moves between two plates and experiences an increase in kinetic energy of 2.2×10−15 J. Calculate ΔV=VA−VB of the plates.arrow_forwardSome satellites use nuclear power. (a) If such a satellite emits a 1.00-W flux of γ rays having an average energy of0.500 MeV, how many are emitted per second? (b) These γ rays affect other satellites. How far away must another satellite be to only receive one γ ray per second per square meter?arrow_forward
- Question: The electronic structure of atoms and molecules may be investigated using photoelectron spectroscopy. An electron in a photoelectron spectrometer is accelerated from rest by a uniform electric field to a speed of 420 km s−1 in 10 µs. Determine the kinetic energy of the electron?arrow_forwardA star’s spectrum emits more radiation with a wavelength of 690.0 nm than with any other wavelength. If the star is 9.78 ly from Earth and its radius is 7.20 × 108 m, what will an Earth-based observer measure for this star’s intensity? Stars are nearly perfect blackbodies. (Note: ly stands for light-years.) Answer in W/m2arrow_forwardA neutral pion 770 (rest energy = 135.0 MeV) produced in a high-energy particle experiment moves at a speed of 0.851c. After a very short time, it decays into two y-ray photons. One of the y-ray photons has an energy of 126 MeV. What is the energy (in MeV) of the second y-ray photon? Take relativistic effects into account. Number i Before decay Units E mm After decay E₂ muarrow_forward
- A penny has a mass of 3.0 g. Calculate the energy that would be required to separate all the neutrons and protons in this coin from one another. For simplicity, assume that the penny is made entirely of 63Cu atoms (of mass 62.929 60 u).The masses of the protonplus- electron and the neutron are 1.007 83 u and 1.008 66 u, respectively.arrow_forwardErnest Rutherford is famous for, among other things, shooting alpha particles at unsuspecting gold atoms. Consider an alpha particle endowed with 5.00 MeV of energy. Determine the closest distance this particle can approach the nucleus of a gold atom before deflectingarrow_forwardWhat is the energy of a photon whose momentum is the same as that of a proton whose kinetic energy is 10.0 MeV?arrow_forward
- When you shine a certain source of EM radiation on a sheet of gold (work function W1 = 5.1 eV), the stopping voltage required to bring all the ejected electrons to a halt is V = 3.5 V. If you were to use this same source of EM radiation on a sheet of potassium (work function W2 = 2.3 eV), what would be the maximum speed of ejected electrons?arrow_forwardI am confused as to why "A distance 2h/3 above the floor" is the answer. Did it use the law of conservation of energy: 1/2mvi^2+mgh+1/2kxi^2+Wnc=1/2mvf^2+mgh+1/2xf^2? I was somehow able to answer and come up with an answer: 2h/3 a distance 2h/3 above the floor. However, I am not sure if I did the right thing. mgh + Wnc = mghf mgh/3 + mgh = mghf 2mgh/3 =mghf 2h/3 = hfarrow_forward15.(a)What is the frequency of an x-ray photon whose momentum is 1.1x 1023 kg m/s? (b) How much energy must a photon have if it is to have the momentum of a 10-MeV proton?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY