A Doppler weather radar station broadcasts a pulse of radio waves at frequency 2.85 GHz. From a relatively small batch of raindrops at bearing 38.6° east of north, the station receives a reflected pulse after 180 µs with a frequency shifted upward by 254 Hz. From a similar batch of raindrops at bearing 39.6° east of north, the station receives a reflected pulse after the same time delay, with a frequency shifted downward by 254 Hz. These pulses have the highest and lowest frequencies the station receives, (a) Calculate the radial velocity components of both batches of raindrops. (b) Assume that these raindrops are swirling in a uniformly rotating vortex. Find the angular speed of their rotation.
(a)
The radial velocity components of both batches of raindrops.
Answer to Problem 39.69AP
The radial velocity component of first batch of raindrops is
Explanation of Solution
Given info: The frequency of radio waves is
Write the equation of frequency of radio waves received.
Here,
Write the equation of frequency of radio waves received for another upward shift.
Here,
Substitute
The frequency of radio waves received for upward shift is,
Here,
Substitute
Thus, the value of
Substitute
Thus, the radial velocity of the radio waves with the upward shift is
The frequency of radio waves received for downward shift is,
Here,
Substitute
Thus, the value of
Substitute
The radial velocity of the radio waves with the downward shift is
Conclusion:
Therefore, the radial velocity component of first batch of raindrops is
(b)
The angular speed of the rotation.
Answer to Problem 39.69AP
The angular speed of the rotation is
Explanation of Solution
Given info: The frequency of radio waves is
Write the equation of angular speed of the vortex.
Here,
Write the equation for radius of vortex.
Here,
The radio waves travels towards the rain and comes back.
Write the equation for one way distance covered by the rain.
Here,
Substitute
Substitute
Substitute
Conclusion:
Therefore, the angular speed of the rotation is
Want to see more full solutions like this?
Chapter 39 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- 1.62 On a training flight, a Figure P1.62 student pilot flies from Lincoln, Nebraska, to Clarinda, Iowa, next to St. Joseph, Missouri, and then to Manhattan, Kansas (Fig. P1.62). The directions are shown relative to north: 0° is north, 90° is east, 180° is south, and 270° is west. Use the method of components to find (a) the distance she has to fly from Manhattan to get back to Lincoln, and (b) the direction (relative to north) she must fly to get there. Illustrate your solutions with a vector diagram. IOWA 147 km Lincoln 85° Clarinda 106 km 167° St. Joseph NEBRASKA Manhattan 166 km 235° S KANSAS MISSOURIarrow_forwardPlz no chatgpt pls will upvotearrow_forward3.19 • Win the Prize. In a carnival booth, you can win a stuffed gi- raffe if you toss a quarter into a small dish. The dish is on a shelf above the point where the quarter leaves your hand and is a horizontal dis- tance of 2.1 m from this point (Fig. E3.19). If you toss the coin with a velocity of 6.4 m/s at an angle of 60° above the horizontal, the coin will land in the dish. Ignore air resistance. (a) What is the height of the shelf above the point where the quarter leaves your hand? (b) What is the vertical component of the velocity of the quarter just before it lands in the dish? Figure E3.19 6.4 m/s 2.1arrow_forward
- Can someone help me answer this thank you.arrow_forward1.21 A postal employee drives a delivery truck along the route shown in Fig. E1.21. Determine the magnitude and direction of the resultant displacement by drawing a scale diagram. (See also Exercise 1.28 for a different approach.) Figure E1.21 START 2.6 km 4.0 km 3.1 km STOParrow_forwardhelp because i am so lost and it should look something like the picturearrow_forward
- 3.31 A Ferris wheel with radius Figure E3.31 14.0 m is turning about a horizontal axis through its center (Fig. E3.31). The linear speed of a passenger on the rim is constant and equal to 6.00 m/s. What are the magnitude and direction of the passenger's acceleration as she passes through (a) the lowest point in her circular motion and (b) the high- est point in her circular motion? (c) How much time does it take the Ferris wheel to make one revolution?arrow_forward1.56 ⚫. Three horizontal ropes pull on a large stone stuck in the ground, producing the vector forces A, B, and C shown in Fig. P1.56. Find the magnitude and direction of a fourth force on the stone that will make the vector sum of the four forces zero. Figure P1.56 B(80.0 N) 30.0 A (100.0 N) 53.0° C (40.0 N) 30.0°arrow_forward1.39 Given two vectors A = -2.00 +3.00 +4.00 and B=3.00 +1.00 -3.00k. (a) find the magnitude of each vector; (b) use unit vectors to write an expression for the vector difference A - B; and (c) find the magnitude of the vector difference A - B. Is this the same as the magnitude of B - Ä? Explain.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning