Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 37, Problem 47AP
To determine
The fringe separation for the arrangement.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a Young's double-slit experiment, light of wavelength 562 nm illuminates two slits which are separated by 1.00 mm. Bright fringes are seen on a screen at a distance of 5.00 m from the slits. Calculate the separation distance in units of mm, between adjacent bright fringes.
Fringes in the Thomas Young experiment are produced using sodium light of wavelength 569 nm and two slits which are 1.1 mm
apart. If the fringes are formed on a screen 1.4 m away from the slits, how far is the third order bright fringe from the middle of the
screen? Give your answer in millimeters (mm).
A double-slit experiment has slit spacing 0.12 mm. What should be the slit-to-screen distance L if the bright fringes are
to be 5.0 mm apart when the slits are illuminated with 633-nm laser light?
Chapter 37 Solutions
Physics for Scientists and Engineers With Modern Physics
Ch. 37.2 - Which of the following causes the fringes in a...Ch. 37.3 - Using Figure 36.6 as a model, sketch the...Ch. 37.5 - One microscope slide is placed on top of another...Ch. 37 - Prob. 1OQCh. 37 - Four trials of Youngs double-slit experiment are...Ch. 37 - Suppose Youngs double-slit experiment is performed...Ch. 37 - Prob. 4OQCh. 37 - Prob. 5OQCh. 37 - Prob. 6OQCh. 37 - Prob. 7OQ
Ch. 37 - Prob. 8OQCh. 37 - Prob. 9OQCh. 37 - A film of oil on a puddle in a parking lot shows a...Ch. 37 - Prob. 1CQCh. 37 - Prob. 2CQCh. 37 - Prob. 3CQCh. 37 - Prob. 4CQCh. 37 - Prob. 5CQCh. 37 - Prob. 6CQCh. 37 - Prob. 7CQCh. 37 - Prob. 8CQCh. 37 - Prob. 9CQCh. 37 - Two slits are separated by 0.320 mm. A beam of...Ch. 37 - Prob. 2PCh. 37 - A laser beam is incident on two slits with a...Ch. 37 - Prob. 4PCh. 37 - Prob. 5PCh. 37 - Prob. 6PCh. 37 - Prob. 7PCh. 37 - Prob. 8PCh. 37 - Prob. 9PCh. 37 - Light with wavelength 442 nm passes through a...Ch. 37 - Prob. 11PCh. 37 - Prob. 12PCh. 37 - Prob. 13PCh. 37 - Prob. 14PCh. 37 - Prob. 15PCh. 37 - A student holds a laser that emits light of...Ch. 37 - Prob. 17PCh. 37 - Prob. 18PCh. 37 - Prob. 19PCh. 37 - Prob. 20PCh. 37 - Prob. 21PCh. 37 - Prob. 22PCh. 37 - Prob. 23PCh. 37 - Prob. 24PCh. 37 - Prob. 25PCh. 37 - Monochromatic coherent light of amplitude E0 and...Ch. 37 - Prob. 27PCh. 37 - Prob. 28PCh. 37 - Prob. 29PCh. 37 - Prob. 30PCh. 37 - Prob. 31PCh. 37 - Prob. 32PCh. 37 - Prob. 33PCh. 37 - Prob. 34PCh. 37 - Prob. 35PCh. 37 - Prob. 36PCh. 37 - Prob. 37PCh. 37 - Prob. 38PCh. 37 - When a liquid is introduced into the air space...Ch. 37 - Prob. 40PCh. 37 - Prob. 41PCh. 37 - Prob. 42PCh. 37 - Prob. 43PCh. 37 - Prob. 44PCh. 37 - Prob. 45APCh. 37 - Prob. 46APCh. 37 - Prob. 47APCh. 37 - Prob. 48APCh. 37 - Prob. 49APCh. 37 - Prob. 50APCh. 37 - Prob. 51APCh. 37 - In a Youngs interference experiment, the two slits...Ch. 37 - In a Youngs double-slit experiment using light of...Ch. 37 - Prob. 54APCh. 37 - Prob. 55APCh. 37 - Prob. 56APCh. 37 - Prob. 57APCh. 37 - Prob. 58APCh. 37 - Prob. 59APCh. 37 - Prob. 60APCh. 37 - Prob. 61APCh. 37 - Prob. 62APCh. 37 - Prob. 63APCh. 37 - Prob. 64APCh. 37 - Prob. 65APCh. 37 - Prob. 66APCh. 37 - Prob. 67APCh. 37 - Prob. 68APCh. 37 - Prob. 69APCh. 37 - Prob. 70APCh. 37 - Prob. 71CPCh. 37 - Prob. 72CPCh. 37 - Prob. 73CPCh. 37 - Prob. 74CPCh. 37 - Prob. 75CPCh. 37 - Prob. 76CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Table P35.80 presents data gathered by students performing a double-slit experiment. The distance between the slits is 0.0700 mm, and the distance to the screen is 2.50 m. The intensity of the central maximum is 6.50 106 W/m2. What is the intensity at y = 0.500 cm? TABLE P35.80arrow_forwardCoherent light rays of wavelength strike a pair of slits separated by distance d at an angle 1, with respect to the normal to the plane containing the slits as shown in Figure P27.14. The rays leaving the slits make an angle 2 with respect to the normal, and an interference maximum is formed by those rays on a screen that is a great distance from the slits. Show that the angle 2 is given by 2=sin1(sin1md) where m is an integer.arrow_forwardA parallel beam of light from a He-Ne laser, with a wavelength 633nm, falls on two very narrow slits 0.064mm apart. How far apart are the fringes in the center of the pattern on a screen 3.9m away?arrow_forward
- A double-slit interference pattern is created by two narrow slits spaced 0.20 mm apart. The distance between the first and the fifth minimum on a screen 59 cm behind the slits is 6.5 mm. What is the wavelength (in nmnm) of the light used in this experiment?arrow_forwardLight of wavelength λ = 580 nm is incident upon two thin slits that are separated by a distance d = 25 μm. The light hits a screen L = 1.5 m from the screen. It is observed that at a point y = 5.5 mm from the central maximum the intensity of the light is I = 55 W/m2. What is the intensity of the light at the two slits (I0) in watts per square meter?arrow_forwardAlthough we have discussed single-slit diffraction only for a slit, a similar result holds when light bends around a straight, thin object, such as a strand of hair. In that case, a is the width of the strand. From actual lab measurements on a human hair, it was found that when a beam of light of wavelength 632.8nm was shone on a single strand of hair, and the diffracted light was viewed on a screen 1.25m away, the first dark fringes on either side of the central bright spot were 5.22cm apart. How thick was this strand of hair?arrow_forward
- Problem 1: In a double slit experiment the first minimum for 415 nm violet light is at an angle of 42°. Randomized Variables 2 = 415 nm e = 42 ° Find the distance between the two slits in micrometers. d= 8 9 5 6 sin() cos() tan() 7 HOME cotan() asin() acos() E A 4 atan() acotan() sinh() 1 2 3 cosh() tanh() cotanh() END O Degrees O Radians Vol BACKSPACE DEL CLEAR +arrow_forwardMonochromatic, in phase light of wavelength > = 760nm is incident on a piece of metal with either one or two slits on it - it is difficult to see to determine which. The diffraction pattern is observed on a viewing screen that is located 90cm away from the metal plate. The first two minima are measured to be 3.9cm and 11.7cm away from the central maxima. What is the brightness of the light at a distance of 9.9cm from the central maxima, relative to the brightness of the central maxima? 23.43 ×10-3 Note: Brightness is proportional to the SQUARE of the amplitude. For double slit, this means 2 I = I, (cos(zd sin 0 sin ))². For single slit, this means I = I。 maximum brightness, and d is the characteristic spacing of the slit(s). (C)² sin ( лd sin 0 лd sin 0 In both of these, I, is thearrow_forwardA double-slit arrangement produces interference fringes for sodium light (l =589 nm) that have an angular separation of 3.50* 10-3 rad. For what wavelength would the angular separation be 10.0% greater?arrow_forward
- A sodium gas-discharge lamp emits a visible "doublet" of two spectral emission lines, one at 589.0nm and the other at 589.6nm. (a) How many slits/cm are required for a transmission diffraction grating that is 2.5 cm wide to distinctly resolve these two lines at first order (m=1) ? (b) At second order (m=2) ?arrow_forwardIn a modified Young's double slit experiment, a monochromatic uniform and parallel beam of light of wavelength 6000 A and intensity (10/) Wm2 is incident normally on two apertures A and B of radii 0.001 m and 0.002 m respectively. A perfectly transparent film of thickness 2000 A and refractive index 1.5 for the wavelength of 6000A is placed in front of aperture A (see figure). Calculate the power (in W) received at the focal spot F of the lens. The lens is symmetrically placed with respect to the apertures. Assume that 10% of the power received by each aperture goes in the original direction and is brought to the focal spot.arrow_forwardMonochromatic, in phase light of wavelength \lambda = 716nm is incident on a piece of metal with either one or two slits on it it is difficult to see to determine which. The diffraction pattern is observed on a viewing screen that is located 75.5cm away from the metal plate. The first two minima are measured to be 17.45cm and 38.08cm away from the central maxima. What is the brightness of the light at a distance of 24.79cm from the central maxima, relative to the brightness of the central maxima?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY