Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 37, Problem 17P
To determine
The height of the radio telescope dish above the water.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Radio waves of wavelength 102 m from a galaxy reach a radio telescope by two separate paths as shown in the figure below. One is a direct path to the receiver, which is situated on the edge of a tall cliff by the ocean, and the second is by reflection off the water. As the
galaxy rises in the east over the water, the first minimum of destructive interference occurs when the galaxy is e = 28.5° above the horizon. Find the height of the radio telescope dish above the water.
167
Your response differs from the correct answer by more than 10%. Double check your calculations. m
Direct
Radio
path
telescope
Reflected
path
Additional Materials
O eBook
Two antennas located at points A and B are broadcasting radio waves of frequency 96.0 MHz, perfectly in phase with each other. The two antennas are separated by a distance d= 6.20
m. An observer, P, is located on the x axis, a distance x= 84.0 m from antenna A, so that APB forms a right triangle with PB as hypotenuse. What is the phase difference between the
waves arriving at P from antennas A and B?
A
P
X
B
4.594x10-¹ rad
Computer's answer now shown above. You are correct.
Your receipt no. is 158-6031 >
Previous Tries
Now observer P walks along the x axis toward antenna A. What is P's distance from A when he first observes fully destructive interference between the two waves?
1.203 m
As P gets closer A, the path length difference gets larger. What's the smallest path length difference that gives destructive interference?
Submit Answer Tries 0/6
Submit Answer Incorrect. Tries 1/6 Previous Tries
If observer P continues walking until he reaches antenna A, at how many places along the x…
Two antennas located at points A and B are broadcasting radio waves of frequency 104.0 MHz. The signals start in phase with each other. The two antennas are separated by a distance d = 8.7 m. An observer is located at point P on the x axis, a distance x = 110.0 m from antenna A. The points A, P, and B form a right triangle.
What is the phase difference between the waves arriving at P from antennas A and B? Enter your answer in radians
Chapter 37 Solutions
Physics for Scientists and Engineers With Modern Physics
Ch. 37.2 - Which of the following causes the fringes in a...Ch. 37.3 - Using Figure 36.6 as a model, sketch the...Ch. 37.5 - One microscope slide is placed on top of another...Ch. 37 - Prob. 1OQCh. 37 - Four trials of Youngs double-slit experiment are...Ch. 37 - Suppose Youngs double-slit experiment is performed...Ch. 37 - Prob. 4OQCh. 37 - Prob. 5OQCh. 37 - Prob. 6OQCh. 37 - Prob. 7OQ
Ch. 37 - Prob. 8OQCh. 37 - Prob. 9OQCh. 37 - A film of oil on a puddle in a parking lot shows a...Ch. 37 - Prob. 1CQCh. 37 - Prob. 2CQCh. 37 - Prob. 3CQCh. 37 - Prob. 4CQCh. 37 - Prob. 5CQCh. 37 - Prob. 6CQCh. 37 - Prob. 7CQCh. 37 - Prob. 8CQCh. 37 - Prob. 9CQCh. 37 - Two slits are separated by 0.320 mm. A beam of...Ch. 37 - Prob. 2PCh. 37 - A laser beam is incident on two slits with a...Ch. 37 - Prob. 4PCh. 37 - Prob. 5PCh. 37 - Prob. 6PCh. 37 - Prob. 7PCh. 37 - Prob. 8PCh. 37 - Prob. 9PCh. 37 - Light with wavelength 442 nm passes through a...Ch. 37 - Prob. 11PCh. 37 - Prob. 12PCh. 37 - Prob. 13PCh. 37 - Prob. 14PCh. 37 - Prob. 15PCh. 37 - A student holds a laser that emits light of...Ch. 37 - Prob. 17PCh. 37 - Prob. 18PCh. 37 - Prob. 19PCh. 37 - Prob. 20PCh. 37 - Prob. 21PCh. 37 - Prob. 22PCh. 37 - Prob. 23PCh. 37 - Prob. 24PCh. 37 - Prob. 25PCh. 37 - Monochromatic coherent light of amplitude E0 and...Ch. 37 - Prob. 27PCh. 37 - Prob. 28PCh. 37 - Prob. 29PCh. 37 - Prob. 30PCh. 37 - Prob. 31PCh. 37 - Prob. 32PCh. 37 - Prob. 33PCh. 37 - Prob. 34PCh. 37 - Prob. 35PCh. 37 - Prob. 36PCh. 37 - Prob. 37PCh. 37 - Prob. 38PCh. 37 - When a liquid is introduced into the air space...Ch. 37 - Prob. 40PCh. 37 - Prob. 41PCh. 37 - Prob. 42PCh. 37 - Prob. 43PCh. 37 - Prob. 44PCh. 37 - Prob. 45APCh. 37 - Prob. 46APCh. 37 - Prob. 47APCh. 37 - Prob. 48APCh. 37 - Prob. 49APCh. 37 - Prob. 50APCh. 37 - Prob. 51APCh. 37 - In a Youngs interference experiment, the two slits...Ch. 37 - In a Youngs double-slit experiment using light of...Ch. 37 - Prob. 54APCh. 37 - Prob. 55APCh. 37 - Prob. 56APCh. 37 - Prob. 57APCh. 37 - Prob. 58APCh. 37 - Prob. 59APCh. 37 - Prob. 60APCh. 37 - Prob. 61APCh. 37 - Prob. 62APCh. 37 - Prob. 63APCh. 37 - Prob. 64APCh. 37 - Prob. 65APCh. 37 - Prob. 66APCh. 37 - Prob. 67APCh. 37 - Prob. 68APCh. 37 - Prob. 69APCh. 37 - Prob. 70APCh. 37 - Prob. 71CPCh. 37 - Prob. 72CPCh. 37 - Prob. 73CPCh. 37 - Prob. 74CPCh. 37 - Prob. 75CPCh. 37 - Prob. 76CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Figure P24.69 shows d- radio-wave transmitter and a receiver, both h = 50.0 m above the ground and d = 6.00 X 102 m apart. The receiver can receive signals directly from the transmit- ter and indirectly from signals that bounce off the ground. If the ground is level between the transmitter and receiver and a /2 phase shift occurs upon reflection, determine the longest wave- lengths that interfere (a) constructively and (b) destructively. Transmitter Receiver Figure P24.69arrow_forwardRadio waves from a star, of wavelength 2.50 3 102 m, reach a radio telescope by two separate paths, as shown in Figure P24.13. One is a direct path to the receiver, which is situated on the edge of a cliff by the ocean. The second is by reflection off the water. The first minimum of destructive interference occurs when the star is u 5 25.0° above the horizon. Find the height of the cliff. (Assume no phase change on reflection.)arrow_forwardDiffraction occurs for all types of waves, including sound waves. High-frequency sound from a distant source with wavelength 9.00 cm passes through a slit 12.0 cm wide. A microphone is placed 8.00 m directly in front of the center of the slit, corresponding to point O in Fig. The microphone is then moved in a direction perpendicular to the line from the center of the slit to point O. At what distances from O will the intensity detected by the microphone be zero?arrow_forward
- You are operating a new radio telescope that has been installed on a tall cliff facing the ocean. You begin the testing of the telescope by facing the antenna toward the ocean, setting its receiving wavelength to 125 m, and sweeping its direction slowly from horizontal to straight up in the sky.Each sweep takes about an hour. When you review the data, you notice that the antenna received no signals when aimed at a certain angle above the horizontal. You continue to take data beginning at the same time each night and discover that the angle at which no signals are detected varies from night to night. Over a full month, the angle at which no signals are detected varies from 24.5° to 25.7°. You finally figure out that the loss of signal is due to destructive interference caused by the reflection of radio waves from the ocean surface, and the monthly variation is due to the changes caused by ocean tides. You inform the local oceanographic institute that you have a novel method of measuring…arrow_forwardTwo radio antennas radiating in phase are positioned at points A and B, separated by a distance of 200 m (Figure P35.43). Radio waves have a frequency of 5.80 MHz. A radio receiver is moved from point B along a line perpendicular to the line connecting A to B (line BC in the figure)At what distances B will there be destructive interference?Note: The distance between the receiver and the sources is not great compared to the separation of the sources.arrow_forward= 35. Figure P36.35 shows a radio-wave transmitter and a receiver separated by a distance d 50.0 m and both a distance h = 35.0 m above the ground. The receiver can receive sig- nals both directly from the transmitter and indirectly from signals that reflect from the ground. Assume the ground is level between the transmitter and receiver and a 180° phase shift occurs upon reflection. Determine the longest wave- lengths that interfere (a) constructively and (b) destructively. h Transmitter d Receiver Figure P36.35 Problems 35 and 36.arrow_forward
- A thin layer of oil with index of refraction no = 1.47 is floating above the water. The index of refraction of water is nw = 1.3. The index of refraction of air is na = 1. A light with wavelength λ = 325 nm goes in from the air to oil and water. Part (a) Express the wavelength of the light in the oil, λo, in terms of λ and no. Part (b) Express the minimum thickness of the film that will result in destructive interference, tmin, in terms of λo. Part (c) Express tmin in terms of λ and no. Part (d) Solve for the numerical value of tmin in nm.arrow_forwardTwo sources are emitting coherent, monochromatic EM waves with a wavelength of 2 cm in air. Source 1 is embedded in a material with index of refraction n1 = 1.5. The distance between source 1 and the edge of the material is 6 cm. You can assume nair = 1. At the point marked with an X, which is 9 cm from source 2 and 3 cm from the edge of the material that source 1 is embedded inside, what kind of interference will you find between EM waves from the two sources? Group of answer choices Destructive Constructivearrow_forwardI need an accurate response.arrow_forward
- 35. Figure P36.35 shows a radio-wave transmitter and a receiver separated by a distance d - 50.0 m and both a distance A - 35.0 m above the ground. The receiver can receive sig- nals both directly from the transmitter and indirectly from signals that reflect from the ground. Assume the ground is level between the transmitter and receiver and a 180° phase shift occurs upon reflection. Determine the longest wave- lengths that interfere (a) constructively and (b) destructively. Transmitter Recriver Figure P36.35 Problems 35 and 36.arrow_forwardLaser light of wavelength 460 nmnm is traveling in air and shines at normal incidence onto the flat end of a transparent plastic rod that has nn = 1.30. The end of the rod has a thin coating of a transparent material that has refractive index 1.75. a)What is the minimum (nonzero) thickness of the coating for which there is maximum transmission of the light into the rod? b)What is the minimum (nonzero) thickness of the coating for which transmission into the rod is minimized?arrow_forwardA monochromatic light of wavelength 316 nm in air is passing through a piece of glass of index of refraction n. The angle of incidence and refraction are 0₁ = 60° and 0₂ = 46° as shown in the figure. What is the speed of light in the glass? (c = 3.00 x 108 m/s) nair = 1 n a) 2.49 x 108 m/s b) 1.82 x 108 m/s c) 3.0 x 108 m/s d) 5.0 x 108 m/s e) None of these is correct. Write your ownarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY