Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 37, Problem 70AP
(a)
To determine
The location of the first red interference band.
(b)
To determine
The film thickness at the position of violet and red bands.
(c)
To determine
The wedge angle of the film.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A flat piece of glass is held stationary and horizontal above the highly polished, flat top end of a 10.0-cm-long vertical metal rod that has its lower end rigidly fixed. The thin film of air between the rod and glass is observed to be bright by reflected light when it is illuminated by light of wavelength 500 nm. As the temperature is slowly increased by 25.0°C, the film changes from bright to dark and back to bright 200 times. What is the coefficient of linear expansion of the metal?
A thin film of oil (no=1.50) with varying thickness floats on water (nw=1.33). When it is illuminated from above by white light, the reflected colors are as shown in the figure. In air, the wavelength of yellow light is 580nm. What is the oil's thickness t at point B?
A glass surface is coated by an oil film of uniform thickness 1.00 x 10-4 cm. The index of
refraction of the oil is 1.25 and that of the glass is 1.50. Some of the wavelengths in visible
region (400 nm
490 nm) are completely transmitted by the oil film under normal incidence.
n x 10
One of the wavelength transmitted completely in visible region is
m. Find the value
11
of n.
Chapter 37 Solutions
Physics for Scientists and Engineers With Modern Physics
Ch. 37.2 - Which of the following causes the fringes in a...Ch. 37.3 - Using Figure 36.6 as a model, sketch the...Ch. 37.5 - One microscope slide is placed on top of another...Ch. 37 - Prob. 1OQCh. 37 - Four trials of Youngs double-slit experiment are...Ch. 37 - Suppose Youngs double-slit experiment is performed...Ch. 37 - Prob. 4OQCh. 37 - Prob. 5OQCh. 37 - Prob. 6OQCh. 37 - Prob. 7OQ
Ch. 37 - Prob. 8OQCh. 37 - Prob. 9OQCh. 37 - A film of oil on a puddle in a parking lot shows a...Ch. 37 - Prob. 1CQCh. 37 - Prob. 2CQCh. 37 - Prob. 3CQCh. 37 - Prob. 4CQCh. 37 - Prob. 5CQCh. 37 - Prob. 6CQCh. 37 - Prob. 7CQCh. 37 - Prob. 8CQCh. 37 - Prob. 9CQCh. 37 - Two slits are separated by 0.320 mm. A beam of...Ch. 37 - Prob. 2PCh. 37 - A laser beam is incident on two slits with a...Ch. 37 - Prob. 4PCh. 37 - Prob. 5PCh. 37 - Prob. 6PCh. 37 - Prob. 7PCh. 37 - Prob. 8PCh. 37 - Prob. 9PCh. 37 - Light with wavelength 442 nm passes through a...Ch. 37 - Prob. 11PCh. 37 - Prob. 12PCh. 37 - Prob. 13PCh. 37 - Prob. 14PCh. 37 - Prob. 15PCh. 37 - A student holds a laser that emits light of...Ch. 37 - Prob. 17PCh. 37 - Prob. 18PCh. 37 - Prob. 19PCh. 37 - Prob. 20PCh. 37 - Prob. 21PCh. 37 - Prob. 22PCh. 37 - Prob. 23PCh. 37 - Prob. 24PCh. 37 - Prob. 25PCh. 37 - Monochromatic coherent light of amplitude E0 and...Ch. 37 - Prob. 27PCh. 37 - Prob. 28PCh. 37 - Prob. 29PCh. 37 - Prob. 30PCh. 37 - Prob. 31PCh. 37 - Prob. 32PCh. 37 - Prob. 33PCh. 37 - Prob. 34PCh. 37 - Prob. 35PCh. 37 - Prob. 36PCh. 37 - Prob. 37PCh. 37 - Prob. 38PCh. 37 - When a liquid is introduced into the air space...Ch. 37 - Prob. 40PCh. 37 - Prob. 41PCh. 37 - Prob. 42PCh. 37 - Prob. 43PCh. 37 - Prob. 44PCh. 37 - Prob. 45APCh. 37 - Prob. 46APCh. 37 - Prob. 47APCh. 37 - Prob. 48APCh. 37 - Prob. 49APCh. 37 - Prob. 50APCh. 37 - Prob. 51APCh. 37 - In a Youngs interference experiment, the two slits...Ch. 37 - In a Youngs double-slit experiment using light of...Ch. 37 - Prob. 54APCh. 37 - Prob. 55APCh. 37 - Prob. 56APCh. 37 - Prob. 57APCh. 37 - Prob. 58APCh. 37 - Prob. 59APCh. 37 - Prob. 60APCh. 37 - Prob. 61APCh. 37 - Prob. 62APCh. 37 - Prob. 63APCh. 37 - Prob. 64APCh. 37 - Prob. 65APCh. 37 - Prob. 66APCh. 37 - Prob. 67APCh. 37 - Prob. 68APCh. 37 - Prob. 69APCh. 37 - Prob. 70APCh. 37 - Prob. 71CPCh. 37 - Prob. 72CPCh. 37 - Prob. 73CPCh. 37 - Prob. 74CPCh. 37 - Prob. 75CPCh. 37 - Prob. 76CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A beam of 580-nm light passes through two closely spaced glass plates at close to normal incidence as shown in Figure P27.23. For what minimum nonzero value of the plate separation d is the transmitted light bright?arrow_forwardA thin film of a liquid floats on ( therefore it is less dense) on a surface of water with n= 1.33. A maximum reflection occurs at a wavelength in air of 410.0 nm. You are able to determine the thickness of the film to be 97.0 nm. What is the index of refraction of the unknown liquid? Consider n to be 1.00 for air.arrow_forwardA thin layer of oil with index of refraction no = 1.47 is floating above the water. The index of refraction of water is nw = 1.3. The index of refraction of air is na = 1. A light with wavelength λ = 325 nm goes in from the air to oil and water. Part (a) Express the wavelength of the light in the oil, λo, in terms of λ and no. Part (b) Express the minimum thickness of the film that will result in destructive interference, tmin, in terms of λo. Part (c) Express tmin in terms of λ and no. Part (d) Solve for the numerical value of tmin in nm.arrow_forward
- A thin layer of liquid methylene iodide (n = 1.76) is sandwiched between two flat, parallel plates of glass (n = 1.42). What is the minimum thickness of the liquid layer if normally incident light with λ= 550 nm in air is to be strongly reflected? 63.0 nm 99.2 nm 78.1 nm 126.0 nmarrow_forwardA thin film of glass (n 1.52) of thickness 0.420 um is viewed under white light at near normal incidence. What wavelength of visible light is most strongly reflected by the film when sur- rounded by air?arrow_forwardA thin film of oil (n = 1.25) is located on smooth wet pavement, creating a system composed of the following basic layers: air, oil (the thin film), and water. When viewed from a direction perpendicular to the pavement, the film reflects red light of 640nm and reflects no green light of 512nm. (a) What are the possible film thicknesses that allow the read light to be reflected? (b) What are the possible film thicknesses if the green light is not reflected? (c) What is the minimum thickness of the oil film if both conditions are satisfied? Hint: compute at least 4 thicknesses in parts (a) and (b)arrow_forward
- A thin layer of liquid methylene iodide (n = 1.756) is sandwiched between two flat, parallel plates of glass (n = 1.50). What is the minimum thickness of the liquid layer if normally incident light with λ = 6.00 × 102 nm in air is to be strongly reflected?arrow_forwardThe Michelson interferometer can be used to measure the index of refraction of a gas by placing an evacuated transparent tube in the light path along one arm of the device. Fringe shifts occur as the gas is slowly added to the tube. Assume 580-nm light is used, the tube is 5.40 cm long, and 152 fringe shifts occur as the pressure of the gas in the tube increases to atmospheric pressure. What is the index of refraction of the gas? Hint: The fringe shifts occur because the wavelength of the light changes inside the gas-filled tube. (Give your answer to five decimal places.) 4.0arrow_forwardA uniform film of oil (n = 1.31) is floating on water. When sunlight in air is incident normally on the film, an observer finds that the reflected light has a brightness maximum at 450 nm and a brightness minimum at 600 nm. What is the thickness of the oil film?arrow_forward
- White light is incident at near normal on a thin film of thickness 542 nm and index of refraction n = 1.473. The film is surrounded by air on all sides. What is the shortest wavelength that will be strongly reflected in the range [300 nm, 700 nm]? Group of answer choices 355 nm 323 nm 311 nm 339 nmarrow_forwardA soap bubble (n = 1.33) floating in air has the shape of a spherical shell with a wall thickness of 120 nm. (a) What is the wavelength of the visible light that is most strongly reflected? (b) Explain how a bubble of different thickness could also strongly reflect light of this same wavelength. (c) Find the two smallest film thicknesses larger than 120 nm that can produce strongly reflected light of the same wavelength.arrow_forwardRed light having a wavelength of 690 nm (in air) is vertically incident on a thin film of oil that has an index of refraction of 1.19. The film of oil floats above water (having an index of refraction of 1.30). The red light is brightly reflected. The minimum (nonzero) thickness of the film of oil is 580 nm. 145 nm. 290 nm. 345 nm.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY