Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 37, Problem 75CP
To determine
The minimum possible value for the slit separation
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In the double-slit arrangement of Figure P36.13, d=0.150 mm, L= 140 cm, λ = 643 nm. and y= 1.80 cm (a) What is the path difference δ for the rays from the two slits arriving at P? (b) Express this path difference in terms of λ. (c) Does P correspond to a maximum, a minimum or an intermediate condition? Give evidence for your answer.
Figure P36.13
In the double-slit arrangement of Figure P37.21, d =
0.150 mm, L = 140 cm, A = 643 nm, and y = 1.80 cm.
(a) What is the path difference d for the rays from the
two slits arriving at P? (b) Express this path difference
in terms of A. (c) Does P correspond to a maximum,
a minimum, or an intermediate condition? Give evi-
dence for your answer.
Viewing screen
67. Interference fringes are produced using Lloyd's mirror
and a source S of wavelength A = 606 nm as shown in
Figure P37.67. Fringes separated by Ay = 1.20 mm are
formed on a screen a distance L = 2.00 m from the
source. Find the vertical distance h of the source above
the reflecting surface.
Viewing
screen
·L
P
S
Mirror
Figure P37.67
Chapter 37 Solutions
Physics for Scientists and Engineers With Modern Physics
Ch. 37.2 - Which of the following causes the fringes in a...Ch. 37.3 - Using Figure 36.6 as a model, sketch the...Ch. 37.5 - One microscope slide is placed on top of another...Ch. 37 - Prob. 1OQCh. 37 - Four trials of Youngs double-slit experiment are...Ch. 37 - Suppose Youngs double-slit experiment is performed...Ch. 37 - Prob. 4OQCh. 37 - Prob. 5OQCh. 37 - Prob. 6OQCh. 37 - Prob. 7OQ
Ch. 37 - Prob. 8OQCh. 37 - Prob. 9OQCh. 37 - A film of oil on a puddle in a parking lot shows a...Ch. 37 - Prob. 1CQCh. 37 - Prob. 2CQCh. 37 - Prob. 3CQCh. 37 - Prob. 4CQCh. 37 - Prob. 5CQCh. 37 - Prob. 6CQCh. 37 - Prob. 7CQCh. 37 - Prob. 8CQCh. 37 - Prob. 9CQCh. 37 - Two slits are separated by 0.320 mm. A beam of...Ch. 37 - Prob. 2PCh. 37 - A laser beam is incident on two slits with a...Ch. 37 - Prob. 4PCh. 37 - Prob. 5PCh. 37 - Prob. 6PCh. 37 - Prob. 7PCh. 37 - Prob. 8PCh. 37 - Prob. 9PCh. 37 - Light with wavelength 442 nm passes through a...Ch. 37 - Prob. 11PCh. 37 - Prob. 12PCh. 37 - Prob. 13PCh. 37 - Prob. 14PCh. 37 - Prob. 15PCh. 37 - A student holds a laser that emits light of...Ch. 37 - Prob. 17PCh. 37 - Prob. 18PCh. 37 - Prob. 19PCh. 37 - Prob. 20PCh. 37 - Prob. 21PCh. 37 - Prob. 22PCh. 37 - Prob. 23PCh. 37 - Prob. 24PCh. 37 - Prob. 25PCh. 37 - Monochromatic coherent light of amplitude E0 and...Ch. 37 - Prob. 27PCh. 37 - Prob. 28PCh. 37 - Prob. 29PCh. 37 - Prob. 30PCh. 37 - Prob. 31PCh. 37 - Prob. 32PCh. 37 - Prob. 33PCh. 37 - Prob. 34PCh. 37 - Prob. 35PCh. 37 - Prob. 36PCh. 37 - Prob. 37PCh. 37 - Prob. 38PCh. 37 - When a liquid is introduced into the air space...Ch. 37 - Prob. 40PCh. 37 - Prob. 41PCh. 37 - Prob. 42PCh. 37 - Prob. 43PCh. 37 - Prob. 44PCh. 37 - Prob. 45APCh. 37 - Prob. 46APCh. 37 - Prob. 47APCh. 37 - Prob. 48APCh. 37 - Prob. 49APCh. 37 - Prob. 50APCh. 37 - Prob. 51APCh. 37 - In a Youngs interference experiment, the two slits...Ch. 37 - In a Youngs double-slit experiment using light of...Ch. 37 - Prob. 54APCh. 37 - Prob. 55APCh. 37 - Prob. 56APCh. 37 - Prob. 57APCh. 37 - Prob. 58APCh. 37 - Prob. 59APCh. 37 - Prob. 60APCh. 37 - Prob. 61APCh. 37 - Prob. 62APCh. 37 - Prob. 63APCh. 37 - Prob. 64APCh. 37 - Prob. 65APCh. 37 - Prob. 66APCh. 37 - Prob. 67APCh. 37 - Prob. 68APCh. 37 - Prob. 69APCh. 37 - Prob. 70APCh. 37 - Prob. 71CPCh. 37 - Prob. 72CPCh. 37 - Prob. 73CPCh. 37 - Prob. 74CPCh. 37 - Prob. 75CPCh. 37 - Prob. 76CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A beam of 580-nm light passes through two closely spaced glass plates at close to normal incidence as shown in Figure P27.23. For what minimum nonzero value of the plate separation d is the transmitted light bright?arrow_forwardFigure P36.53 shows two thin glass plates separated by a wire with a square cross section of side length w, forming an air wedge between the plates. What is the edge length w of the wire if 42 dark fringes are observed from above when 589-nm light strikes the wedge at normal incidence? FIGURE P36.53arrow_forwardIn Figure P37.18, let L = 120 cm and d = 0.250 cm. The slits are illuminated with coherent 600-nm light. Calculate the distance y from the central maximum for which the average intensity on the screen is 75.0% of the maximum.arrow_forward
- = 35. Figure P36.35 shows a radio-wave transmitter and a receiver separated by a distance d 50.0 m and both a distance h = 35.0 m above the ground. The receiver can receive sig- nals both directly from the transmitter and indirectly from signals that reflect from the ground. Assume the ground is level between the transmitter and receiver and a 180° phase shift occurs upon reflection. Determine the longest wave- lengths that interfere (a) constructively and (b) destructively. h Transmitter d Receiver Figure P36.35 Problems 35 and 36.arrow_forwardA circular aperture is lit up by a laser with wavelength 624 nm. The central maximum on the screen 56.0 cm away has the same diameter as the circular aperture. What is the diameter of the circular aperture?arrow_forwardThe Michelson interferometer can be used to measure the index of refraction of a gas by placing an evacuated transparent tube in the light path along one arm of the device. Fringe shifts occur as the gas is slowly added to the tube. Assume 580-nm light is used, the tube is 5.40 cm long, and 152 fringe shifts occur as the pressure of the gas in the tube increases to atmospheric pressure. What is the index of refraction of the gas? Hint: The fringe shifts occur because the wavelength of the light changes inside the gas-filled tube. (Give your answer to five decimal places.) 4.0arrow_forward
- One way to determine the index of refraction of a gas is to use an interferometer. As shown below, one of the beams of an interferometer passes through a glass container that has a length of L = 1.8 cm. Initially the glass container is a vacuum. When gas is slowly allowed into the container, a total of 6894 dark fringes move past the reference line. The laser has a wavelength of 635 nm (this is the wavelength when the light from the laser is moving through a vacuum). A.) Determine how many wavelengths will fit into the glass container when it is a vacuum. Since the light passes through the container twice, you need to determine how many wavelengths will fit into a glass container that has a length of 2L.number of wavelengths (vacuum) = B.) The number of dark fringes is the difference between the number of wavelengths that fit in the container (length of 2L) when it has gas and the number of wavelengths that fit in the container (length of 2L) when it is a vacuum. Use this knowledge to…arrow_forward35. Figure P36.35 shows a radio-wave transmitter and a receiver separated by a distance d - 50.0 m and both a distance A - 35.0 m above the ground. The receiver can receive sig- nals both directly from the transmitter and indirectly from signals that reflect from the ground. Assume the ground is level between the transmitter and receiver and a 180° phase shift occurs upon reflection. Determine the longest wave- lengths that interfere (a) constructively and (b) destructively. Transmitter Recriver Figure P36.35 Problems 35 and 36.arrow_forwardIn the single-slit diffraction experiment of the figure, let the wavelength of the light be 541 nm, the slit width be 6.11 pm, and the viewing screen be at distance D = 3.41 m. Let a y axis extend upward along the viewing screen, with its origin at the center of the diffraction pattern. Also let Ip represent the intensity of the diffracted light at point P at y = 15.8 cm. (a) What is the ratio of Ip the intensity Im at the center of the pattern? Determine where point P is in the diffraction pattern by giving the orders of nearest (b) maximum (0 is the central maximum) and (c) minimum between which it lies. Totally destructive interference- P1 12 Po Central axis a/2 Viewing screen Incident wave Units (a) Number 2.98e-4 This answer has no units Units (b) Number This answer has no units Version 4.24.1 2.arrow_forward
- One way to determine the index of refraction of a gas is to use an interferometer. As shown below, one of the beams of an interferometer passes through a glass container that has a length of L = 1.8 cm. Initially the glass container is a vacuum. When gas is slowly allowed into the container, a total of 7571 dark fringes move past the reference line. The laser has a wavelength of 687 nm (this is the wavelength when the light from the laser is moving through a vacuum). Laser Mirror Glass Container Beam Splitter Diffraction Pattern Mirror A.) Determine how many wavelengths will fit into the glass container when it is a vacuum. Since the light passes through the container twice, you need to determine how many wavelengths will fit into a glass container that has a length of 2L. number of wavelengths (vacuum) = B.) The number of dark fringes is the difference between the number of wavelengths that fit in the container (length of 2L) when it has gas and the number of wavelengths that fit in…arrow_forward34. Laser light with a wavelength of 632.8 nm is directed QC through one slit or two slits and allowed to fall on a screen 2.60 m beyond. Figure P37.34 shows the pattern on the screen, with a centimeter ruler below it. (a) Did the light pass through one slit or two slits? Explain how you can determine the answer. (b) If one slit, find its width. If two slits, find the distance between their centers. 5 6 7 8 9 10 11 12 13 Figure P37.34arrow_forwardTwo radio antennas radiating in phase are positioned at points A and B, separated by a distance of 200 m (Figure P35.43). Radio waves have a frequency of 5.80 MHz. A radio receiver is moved from point B along a line perpendicular to the line connecting A to B (line BC in the figure)At what distances B will there be destructive interference?Note: The distance between the receiver and the sources is not great compared to the separation of the sources.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY