
Concept explainers
(a)
The change you see when you gradually move the light source towards the central mirror, through a distance
(a)

Answer to Problem 1OQ
Option (a), There is no change in the pattern.
Explanation of Solution
If the mirrors are not moved, the character of the interference system remains the same. This ensures no change in the pattern of the interference.
Conclusion:
Since there is no change in the pattern, option (a) is the correct answer.
Since the dark circle change into bright circle, option (b) is incorrect.
Since the dark circle changes into bright circle and then back into dark circle, option (c) is incorrect.
Since the dark circle changes into bright circle and then back into dark circle and then into bright circle, option (d) is incorrect.
(b)
The change you see when you gradually move the movable mirror towards the central mirror, through a distance
(b)

Answer to Problem 1OQ
Option (c), The dark circle changes into a bright circle and then back into a dark circle.
Explanation of Solution
The mirrors are moved, so the character of the interference system will change. This ensures change in the pattern of the interference. The initial dark circle is due to the destructive interference pattern out of phase by
The mirror is moved by
Conclusion:
Since there is no change in the pattern, option (a) is the incorrect answer.
Since the dark circle changes into bright circle, option (b) is incorrect.
Since the dark circle changes into bright circle and then back into dark circle, option (c) is correct.
Since the dark circle changes into bright circle and then back into dark circle and then into bright circle, option (d) is incorrect.
Want to see more full solutions like this?
Chapter 37 Solutions
Physics for Scientists and Engineers With Modern Physics
- Question 6: Chlorine is widely used to purify municipal water supplies and to treat swimming pool waters. Suppose that the volume of a particular sample of Cl₂ gas is 8.70 L at 895 torr and 24°C. (a) How many grams of Cl₂ are in the sample? ⚫ Atomic mass of CI = 35.453 g/mol • Molar mass of Cl₂ = 2 x 35.453 = 70.906 g/mol Solution: Use the Ideal Gas Law: Step 1: Convert Given Values • Pressure: P = 895 torr → atm PV= = nRT 1 P = 895 × = 1.1789 atm 760 • Temperature: Convert to Kelvin: T24273.15 = 297.15 K • Gas constant: R = 0.0821 L atm/mol. K Volume: V = 8.70 L Step 2: Solve for n . PV n = RT n = (1.1789)(8.70) (0.0821)(297.15) 10.25 n = = 0.420 mol 24.405 Step 3: Calculate Mass of Cl₂ Final Answer: 29.78 g of Cl₂. mass nx M mass= (0.420)(70.906) mass= 29.78 garrow_forwardE1 R₁ w 0.50 20 Ω 12 R₁₂ ww ΒΩ R₂ 60 E3 C RA w 15 Ω E2 0.25 E4 0.75 Ω 0.5 Ωarrow_forwardSolve plzarrow_forward
- how would i express force in vector form I keep getting a single numberarrow_forwardplease help me solve this questions. show all calculations and a good graph too :)arrow_forwardWhat is the force (in N) on the 2.0 μC charge placed at the center of the square shown below? (Express your answer in vector form.) 5.0 με 4.0 με 2.0 με + 1.0 m 1.0 m -40 με 2.0 μCarrow_forward
- What is the force (in N) on the 5.4 µC charge shown below? (Express your answer in vector form.) −3.1 µC5.4 µC9.2 µC6.4 µCarrow_forwardAn ideal gas in a sealed container starts out at a pressure of 8900 N/m2 and a volume of 5.7 m3. If the gas expands to a volume of 6.3 m3 while the pressure is held constant (still at 8900 N/m2), how much work is done by the gas? Give your answer as the number of Joules.arrow_forwardThe outside temperature is 25 °C. A heat engine operates in the environment (Tc = 25 °C) at 50% efficiency. How hot does it need to get the high temperature up to in Celsius?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





