Concept explainers
Figure CQ37.2 shows an unbroken soap film in a circular frame. The film thickness increases from lop to bottom, slowly at first and then rapidly. As a simpler model, consider a soap film (n = 1.33) contained within a rectangular wire frame. The frame is held vertically so that the film drains downward and forms a wedge with flat faces. The thickness of the film at the top is essentially zero. The film is viewed in reflected white light with near-normal incidence, and the first violet (λ = 420 nm) interference band is observed 3.00 cm from the top edge of the film, (a) Locate the first red (λ = 680 nm) interference band, (b) Determine the film thickness at the positions of the violet and red bands, (c) What is the wedge angle of the film?
(a)
The position of the first red interference band.
Answer to Problem 37.70AP
The position of the first red interference band is
Explanation of Solution
Given info: The index of refraction of the soap film is
The diagram of thin film in rectangular wire frame is,
Figure (1)
From figure (1), the formula of tangent of angle is,
Here,
Rearrange the above equation for
The condition for constructive interference for red band in a thin soap film is,
Here,
The condition for constructive interference for violet in a thin soap film is,
Here,
Divide equation (3) by (4) on both sides.
Substitute
Substitute
Substitute
Conclusion:
Therefore, the position of the first red interference band is
(b)
The film thickness at the position of red and violet bands.
Answer to Problem 37.70AP
The film thickness at the position of red band is
Explanation of Solution
Given info: The index of refraction of the soap film is
From equation (3), the condition for constructive interference is,
Substitute
From equation (4), the condition for constructive interference is,
Substitute
Conclusion:
Therefore, the film thickness at the position of red band is
(c)
The wedge angle of the film.
Answer to Problem 37.70AP
The wedge angle of the film is
Explanation of Solution
Given info: The index of refraction of the soap film is
From figure (1), the formula of tangent of angle is,
Substitute
Conclusion:
Therefore, the wedge angle of the film is
Want to see more full solutions like this?
Chapter 37 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- A beam of 580-nm light passes through two closely spaced glass plates at close to normal incidence as shown in Figure P27.23. For what minimum nonzero value of the plate separation d is the transmitted light bright?arrow_forwardA thin film of oil (n = 1.25) is located on smooth wet pavement, creating a system composed of the following basic layers: air, oil (the thin film), and water. When viewed from a direction perpendicular to the pavement, the film reflects red light of 640nm and reflects no green light of 512nm. (a) What are the possible film thicknesses that allow the read light to be reflected? (b) What are the possible film thicknesses if the green light is not reflected? (c) What is the minimum thickness of the oil film if both conditions are satisfied? Hint: compute at least 4 thicknesses in parts (a) and (b)arrow_forwardA thin film of glass (n 1.52) of thickness 0.420 um is viewed under white light at near normal incidence. What wavelength of visible light is most strongly reflected by the film when sur- rounded by air?arrow_forward
- A thin layer of liquid methylene iodide (n = 1.756) is sandwiched between two flat, parallel plates of glass (n = 1.50). What is the minimum thickness of the liquid layer if normally incident light with λ = 6.00 × 102 nm in air is to be strongly reflected?arrow_forwardFigure CQ24.7 shows rays with wavelength l incident from above onto thin films surrounded by air. (a) Will the film in Figure CQ24.7a appear bright due to constructive interference or dark due to destructive interference? Indicate your answer with B for bright or D for dark. (b) Repeat part (a) for Figure CQ24.7b. (c) Repeat part (a) for Figure CQ24.7c.arrow_forwardThe Michelson interferometer can be used to measure the index of refraction of a gas by placing an evacuated transparent tube in the light path along one arm of the device. Fringe shifts occur as the gas is slowly added to the tube. Assume 580-nm light is used, the tube is 5.40 cm long, and 152 fringe shifts occur as the pressure of the gas in the tube increases to atmospheric pressure. What is the index of refraction of the gas? Hint: The fringe shifts occur because the wavelength of the light changes inside the gas-filled tube. (Give your answer to five decimal places.) 4.0arrow_forward
- A thin layer of liquid methylene iodide (n = 1.76) is sandwiched between two flat, parallel plates of glass (n = 1.42). What is the minimum thickness of the liquid layer if normally incident light with λ= 550 nm in air is to be strongly reflected? 63.0 nm 99.2 nm 78.1 nm 126.0 nmarrow_forwardAnti-reflective coatings on lenses use thin-film interference to eliminate the reflection of a particular color. Suppose a glass lens (ng = 1.51) is covered with a thin film (nf = 1.32) to prevent green light (λ = 536 nm) from being reflected. Part (a) Write an expression for the minimum thickness the film can have, t. Part (b) Calculate the minimum thickness, t, in nanometers?arrow_forwardA thin layer of oil floats on a puddle of water. When sunlight hits the film from directly above, the colors red (650 nm) and violet (390 nm) are reflected. What is the minimum thickness of the oil? Use n=1.5 for the oil, and n=1.33 for water.arrow_forward
- One way to determine the index of refraction of a gas is to use an interferometer. As shown below, one of the beams of an interferometer passes through a glass container that has a length of L = 1.8 cm. Initially the glass container is a vacuum. When gas is slowly allowed into the container, a total of 7571 dark fringes move past the reference line. The laser has a wavelength of 687 nm (this is the wavelength when the light from the laser is moving through a vacuum). Laser Mirror Glass Container Beam Splitter Diffraction Pattern Mirror A.) Determine how many wavelengths will fit into the glass container when it is a vacuum. Since the light passes through the container twice, you need to determine how many wavelengths will fit into a glass container that has a length of 2L. number of wavelengths (vacuum) = B.) The number of dark fringes is the difference between the number of wavelengths that fit in the container (length of 2L) when it has gas and the number of wavelengths that fit in…arrow_forwardOne way to determine the index of refraction of a gas is to use an interferometer. As shown below, one of the beams of an interferometer passes through a glass container that has a length of L = 1.8 cm. Initially the glass container is a vacuum. When gas is slowly allowed into the container, a total of 6894 dark fringes move past the reference line. The laser has a wavelength of 635 nm (this is the wavelength when the light from the laser is moving through a vacuum). A.) Determine how many wavelengths will fit into the glass container when it is a vacuum. Since the light passes through the container twice, you need to determine how many wavelengths will fit into a glass container that has a length of 2L.number of wavelengths (vacuum) = B.) The number of dark fringes is the difference between the number of wavelengths that fit in the container (length of 2L) when it has gas and the number of wavelengths that fit in the container (length of 2L) when it is a vacuum. Use this knowledge to…arrow_forwardA film of magnesium fluoride (n = 1.38) is used to coat a glass camera lens (n = 1.52). If the thickness of the film is 105 nm, calculate the wavelength of visible light that will have the most limited reflection.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning