Concept explainers
Young’s double-slit experiment underlies the instrument landing system used to guide aircraft to sale landings at some airports when the visibility is pool. Although real systems are more complicated than the example described here, they operate on the same principles. A pilot is trying to align her plane with a runway as suggested in Figure P37.22. Two radio antennas (the black dots in the figure) are positioned adjacent to the runway, separated by d = 40.0 m. The antennas broadcast unmodulated coherent radio waves at .10.0 MHz.
The red lines in Figure P37.22 represent paths along which maxima in the interference pattern of the radio waves exist. (a) Find the wavelength of the waves. The pilot “locks onto” the strong signal
Trending nowThis is a popular solution!
Chapter 37 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- Two converging lenses A and B, with focal lengths =20cm and = 25cm, are placed 80cm apart, as shown in the figure (1). An object is placed 60cm in front of the first lens as shown in figure (2). Determine (a) the position, and (b) the magnification, of the final image formed by the combination of the two lenses.arrow_forwardMajor sources of error in refractionnof light experiment.arrow_forwardCalculate the density of states for a free electron “gas” (know for 3D and how toalso calculate if modeling a 2D material (e.g. graphene).arrow_forward
- No chatgpt plsarrow_forwardWhen the lights of a car are switched on, an ammeter in series with them reads 7.29 A and a voltmeter connected across them reads 12.0 V (see the figure). When the electric starting motor is turned on, the ammeter reading drops to 5.70 A and the lights dim somewhat. If the internal resistance of the battery is 0.0549 and that of the ammeter is negligible, what are (a) the emf of the battery and (b) the current through the starting motor (in A) when the lights are on? S Lights Starting. motor E www Tarrow_forwardNo chstgptarrow_forward
- Draw free body diagram for Figure 1arrow_forwardThree Force vectors in the X-Y plane are A=20 N <80°, B=40 N <45°, and C= 30 N L-60° . 1. Find the resultant force in unit vector notation. the magnitude and the direction of the resultant force. The magnitude and the direction of the equilibrium force. 2. Find the same as question 1 above using the graphical method.arrow_forwardI need help with this problem and an explanation for the solution described below. (University Physics 1: Thermodynamics)arrow_forward
- An astronomer discovered two planets, X and Y, orbiting a star. From the perspective of the astronomer, the planets orbit the star as depicted in the figures. Five years ago, the planets were in the position shown in figure (a), with X, Y, and the star in a straight line. Today, planet X is in the position shown in figure (b), having made an angular displacement of 90.0°. If the radii of their orbits are in the ratio 5:4, what is the angular displacement of Y? (Give your answer in revolutions.) a b 1/5 × Equate Newton's law of universal gravitation with his second law, noting that the force in this case is a centripetal force, and use the relationship among angular velocity, radius, and linear velocity. Solve for the angular velocity of planet Y, and calculate the angular displacement in revolutions. revolutionsarrow_forwardQ4. A red ball is placed at point A in the figure below: Second quadrant 3.0 m Third quadrant y First quadrant Fourth quadrant 2.0 m 3.0 m 1.0 m 1. How many images are seen by an observer at point O? 3 images can be seen 2. What are the (x,y) coordinates of the image in the first quadrant? 3. What are the (x,y)coordinates of the image in the second quadrant? 4. What are the (x,y) coordinates of the image in the fourth quadrant? Tarrow_forwardCan you please solve a, b and c showing all steps and final answersarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning