Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 37, Problem 37.3QQ
One microscope slide is placed on top of another with their left edges in contact and a human hair under the right edge of the upper slide. As a result, a wedge of air exists between the slides. An interference pattern results when monochromatic light is incident on the wedge. What is at the left edges of the slides? (a) a dark fringe (b) a bright fringe (c) impossible to determine
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
One microscope slide is placed on top of another with their left edges in contact and a human hair under the right edge of the upper slide. As a result, a wedge of air exists between the slides. An interference pattern results when monochromatic light is incident on the wedge. What is at the left edges of the slides? (a) a dark fringe (b) a bright fringe (c) impossible to determine
The Michelson interferometer can be used to measure the index of refraction of a gas by placing an evacuated transparent tube in the light path along one arm of the device. Fringe shifts occur as the
gas is slowly added to the tube. Assume 610-nm light is used, the tube is 5.40 cm long, and 168 bright fringes pass on the screen as the pressure of the gas in the tube increases to atmospheric
pressure. What is the index of refraction of the gas? Hint: The fringe shifts occur because the wavelength of the light changes inside the gas-filled tube. (Give your answer to at least five decimal
places.)
Two plane rectangular pieces of glass are in contact at one edge and are separated at the other end 10 cm away by a wire to form a wedge shaped film. When the film was illuminated by light of wavelength 6000 A°, 10 fringes were observed per cm. Determine the diameter of the wire.
options
0.04mm
0.03mm
0.05mm
0.06mm
Chapter 37 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 37 - Which of the following causes the fringes in a...Ch. 37 - Using Figure 36.6 as a model, sketch the...Ch. 37 - One microscope slide is placed on top of another...Ch. 37 - While using a Michelson interferometer (shown in...Ch. 37 - Four trials of Young's double-slit experiment are...Ch. 37 - Suppose Youngs double-slit experiment is performed...Ch. 37 - Green light has a wavelength of 500 nm in air. (i)...Ch. 37 - A thin layer of oil (n = 1.25) is floating on...Ch. 37 - A monochromatic beam of light of wavelength .500...Ch. 37 - According to Table 35.1, the index of refraction...
Ch. 37 - Suppose you perform Youngs double-slit experiment...Ch. 37 - A plane monochromatic light wave is incident on a...Ch. 37 - A film of' oil on a puddle in a parking lot shows...Ch. 37 - Prob. 37.1CQCh. 37 - Prob. 37.2CQCh. 37 - Explain why two flashlights held close together do...Ch. 37 - A lens with outer radius of curvature R and index...Ch. 37 - Consider a dark fringe in a double-slit...Ch. 37 - Prob. 37.6CQCh. 37 - What is the necessary condition on the path length...Ch. 37 - In a laboratory accident, you spill two liquids...Ch. 37 - A theatrical smoke machine fills the space bet...Ch. 37 - Two slits are separated by 0.320 mm. A beam of...Ch. 37 - Light of wavelength 530 nm illuminates a pair of...Ch. 37 - A laser beam is incident on two slits with a...Ch. 37 - A Youngs interference experiment is performed with...Ch. 37 - Youngs double-slit experiment is performed with...Ch. 37 - Why is the following situation impossible? Two...Ch. 37 - Light of wavelength 620 nm falls on a double slit,...Ch. 37 - In a Youngs double-slit experiment, two parallel...Ch. 37 - pair of narrow, parallel slits separated by 0.250...Ch. 37 - Light with wavelength 442 nm passes through a...Ch. 37 - The two speakers of a boom box are 35.0 cm apart....Ch. 37 - Prob. 37.12PCh. 37 - Two radio antennas separated by d = 300 in as...Ch. 37 - A riverside warehouse has several small doors...Ch. 37 - A student holds a laser that emits light of...Ch. 37 - A student holds a laser that emits light of...Ch. 37 - Radio waves of wavelength 125 m from a galaxy...Ch. 37 - In Figure P36.10 (not to scale), let L = 1.20 m...Ch. 37 - Coherent light rays of wavelength strike a pair...Ch. 37 - Monochromatic light of wavelength is incident on...Ch. 37 - In the double-slit arrangement of Figure P36.13, d...Ch. 37 - Youngs double-slit experiment underlies the...Ch. 37 - Two slits are separated by 0.180 mm. An...Ch. 37 - Prob. 37.24PCh. 37 - In Figure P37.18, let L = 120 cm and d = 0.250 cm....Ch. 37 - Monochromatic coherent light of amplitude E0 and...Ch. 37 - The intensity on the screen at a certain point in...Ch. 37 - Green light ( = 546 nm) illuminates a pair of...Ch. 37 - Two narrow, parallel slits separated by 0.850 mm...Ch. 37 - A soap bubble (n = 1.33) floating in air has the...Ch. 37 - A thin film of oil (n = 1.25) is located on...Ch. 37 - A material having an index of refraction of 1.30...Ch. 37 - Prob. 37.33PCh. 37 - A film of MgF2 (n = 1.38) having thickness 1.00 ...Ch. 37 - A beam of 580-nm light passes through two closely...Ch. 37 - An oil film (n = 1.45) floating on water is...Ch. 37 - An air wedge is formed between two glass plates...Ch. 37 - Astronomers observe the chromosphere of the Sun...Ch. 37 - When a liquid is introduced into the air space...Ch. 37 - A lens made of glass (ng = 1.52) is coated with a...Ch. 37 - Two glass plates 10.0 cm long are in contact at...Ch. 37 - Mirror M1 in Figure 36.13 is moved through a...Ch. 37 - Prob. 37.43PCh. 37 - One leg of a Michelson interferometer contains an...Ch. 37 - Radio transmitter A operating at 60.0 MHz is 10.0...Ch. 37 - A room is 6.0 m long and 3.0 m wide. At the front...Ch. 37 - In an experiment similar to that of Example 36.1,...Ch. 37 - In the What If? section of Example 36.2, it was...Ch. 37 - An investigator finds a fiber at a crime scene...Ch. 37 - Raise your hand and hold it flat. Think of the...Ch. 37 - Two coherent waves, coming from sources at...Ch. 37 - In a Youngs interference experiment, the two slits...Ch. 37 - In a Youngs double-slit experiment using light of...Ch. 37 - Review. A flat piece of glass is held stationary...Ch. 37 - A certain grade of crude oil has an index of...Ch. 37 - The waves from a radio station can reach a home...Ch. 37 - Interference effects are produced at point P on a...Ch. 37 - Measurements are made of the intensity...Ch. 37 - Many cells are transparent anti colorless....Ch. 37 - Consider the double-slit arrangement shown in...Ch. 37 - Figure P36.35 shows a radio-wave transmitter and a...Ch. 37 - Figure P36.35 shows a radio-wave transmitter and a...Ch. 37 - In a Newtons-rings experiment, a plano-convex...Ch. 37 - Why is the following situation impossible? A piece...Ch. 37 - A plano-concave lens having index of refraction...Ch. 37 - A plano-convex lens has index of refraction n. The...Ch. 37 - Interference fringes are produced using Lloyds...Ch. 37 - Prob. 37.68APCh. 37 - Astronomers observe a 60.0-MHz radio source both...Ch. 37 - Figure CQ37.2 shows an unbroken soap film in a...Ch. 37 - Our discussion of the techniques for determining...Ch. 37 - The condition for constructive interference by...Ch. 37 - Both sides of a uniform film that has index of...Ch. 37 - Prob. 37.74CPCh. 37 - Monochromatic light of wavelength 620 nm passes...Ch. 37 - Prob. 37.76CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A beam of monochromatic green light is diffracted by a slit of width 0.550 mm. The diffraction pattern forms on a wall 2.06 m beyond the slit. The distance between the positions of zero intensity on both sides of the central bright fringe is 4.10 mm. Calculate the wavelength of the light.arrow_forwardWhy is the following situation impossible? A piece of transparent material having an index of refraction n = 1.50 is cut into the shape of a wedge as shown in Figure P36.40. Both the top and bottom surfaces of the wedge are in contact with air. Monochromatic light of wavelength = 632.8 nm is normally incident from above, and the wedge is viewed from above. Let h = 1.00 mm represent the height of the wedge and = 0.500 m its length. A thin-film interference pattern appears in the wedge due to reflection from the top and bottom surfaces. You have been given the task of counting the number of bright fringes that appear in the entire length of the wedge. You find this task tedious, and your concentration is broken by a noisy distraction after accurately counting 5 000 bright fringes. Figure P36.40arrow_forwardBoth sides of a uniform film that has index of refraction n and thickness d are in contact with air. For normal incidence of light, an intensity minimum is observed in the reflected light at λ2 and an intensity maximum is observed at λ1, where λ1 > λ2. (a) Assuming no intensity minima are observed between λ1 and λ2, find an expression for the integer m in Equations 27.13 and 27.14 in terms of the wavelengths λ1 and λ2. (b) Assuming n = 1.40, λ1 = 500 nm, and λ2 = 370 nm, determine the best estimate for the thickness of the film.arrow_forward
- Interference fringes are produced using Lloyds mirror and a source S of wavelength = 606 nm as shown in Figure P36.41. Fringes separated by y = 1.20 mm are formed on a screen a distance L = 2.00 m from the source. Find the vertical distance h of the source above the reflecting surface. Figure P36.41arrow_forwardIn Figure P36.10 (not to scale), let L = 1.20 m and d = 0.120 mm and assume the slit system is illuminated with monochromatic 500-nm light. Calculate the phase difference between the two wave fronts arriving at P when (a) = 0.500 and (b) y = 5.00 mm. (c) What is the value of for which the phase difference is 0.333 rad? (d) What is the value of for which the path difference is /4? Figure P36.10arrow_forwardA monochromatic light of unknown wavelength is incident on a slit of width 20 m. A diffraction pattern is seen at a screen 2.5 m away where the central maximum is spread over a distance of 10.0 cm. Find the wavelength.arrow_forward
- Into one arm of a Michelson interferometer, a plastic sheet of thickness 75 m is inserted, which causes a shift in the interference pattern by 86 fringes. The light source has wavelength of 610 nm in air. What is the index of refraction of this plastic?arrow_forwardAn effect analogous to two-slit interference can occur with sound waves, instead of light. In an open field, two speakers placed 1.30 m apart are powered by a single-function generator producing sine waves at 1200-Hz frequency. A student walks along a line 12.5 m away and parallel to the line between the speakers. She hears an alternating pattern of loud and quiet, due to constructive and destructive interference. What is (a) the wavelength of this sound and (b) the distance between the central maximum and the first maximum (loud) position along this line?arrow_forwardShow that the distribution of intensity in a double-slit pattern is given by Equation 36.9. Begin by assuming that the total magnitude of the electric field at point P on the screen in Figure 36.4 is the superposition of two waves, with electric field magnitudes E1=E0sintE2=E0sin(t+) The phase angle in in E2 is due to the extra path length traveled by the lower beam in Figure 36.4. Recall from Equation 33.27 that the intensity of light is proportional to the square of the amplitude of the electric field. In addition, the apparent intensity of the pattern is the time-averaged intensity of the electromagnetic wave. You will need to evaluate the integral of the square of the sine function over one period. Refer to Figure 32.5 for an easy way to perform this evaluation. You will also need the trigonometric identity sinA+sinB=2sin(A+B2)cos(AB2)arrow_forward
- Consider the double-slit arrangement shown in Figure P37.60, where the slit separation is d and the distance from the slit to the screen is L. A sheet of transparent plastic having an index of refraction n and thickness t is placed over the upper slit. As a result, the central maximum of the interference pattern moves upward a distance y Find y.arrow_forwardAn air wedge is formed between two glass plates separated at one edge by a very line wire of circular cross section as shown in Figure P27.25. When the wedge is illuminated from above by 600-nm light and viewed from above, 30 dark fringes are observed. Calculate the diameter d of the wire.arrow_forwardFor 600-nm wavelength light and a slit separation of 0.12 mm, what are the angular positions of the first and third maxima in the double slit interference pattern?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY