Concept explainers
Monochromatic coherent light of amplitude E0 and angular frequency ω passes through three parallel slits, each separated by a distance d from its neighbor. (a) Show that the time-averaged intensity as a function of the angle θ is
(b) Explain how this expression describes both the primary and the secondary maxima. (c) Determine the ratio of the intensities of the primary and secondary maxima. Hint: See Problem 16.
(a)
To show: The time averaged intensity as a function of angle
Answer to Problem 37.26P
Explanation of Solution
Given info: The amplitude of monochromatic light is
The amplitude of the monochromatic light is,
Here,
The total amplitude of monochromatic light is,
Substitute
Apply the trigonometric identity to the above expression as,
Apply the trigonometric identity to the above expression as,
Add the above result to
As it is known that intensity of monochromatic light is directly proportional to the the square of the electric field that is,
Here,
The resultant field is obtained by square the above expression as,
Substitute
Conclusion:
Thus, the time averaged intensity as a function of angle
(b)
Answer to Problem 37.26P
Explanation of Solution
Given info: The amplitude of monochromatic light is
From the above expression obtained in part (a), the minimum interference is obtained when
Conclusion:
Thus, the expression describes both the primary and secondary maxima.
(c)
Answer to Problem 37.26P
Explanation of Solution
Given info: The amplitude of monochromatic light is
Consider the amplitude of the monochromatic light is,
The total amplitude of monochromatic light is,
Substitute
Apply the trigonometric identity to the above expression as,
Apply the trigonometric identity to the above expression as,
Add the above result to
As it is known that intensity of monochromatic light is directly proportional to the square of the electric field that is,
Here,
The resultant field is obtained by square the above expression as,
Substitute
The expression for the intensity for primary maxima is,
The expression for the intensity for secondary maxima is,
Take the ratio of the above two expression as,
Conclusion:
Therefore, the ratio of the intensities of the primary and secondary maxima is
Want to see more full solutions like this?
Chapter 37 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- Three Force vectors in the X-Y plane are A=20 N <80°, B=40 N <45°, and C= 30 N L-60° . 1. Find the resultant force in unit vector notation. the magnitude and the direction of the resultant force. The magnitude and the direction of the equilibrium force. 2. Find the same as question 1 above using the graphical method.arrow_forwardI need help with this problem and an explanation for the solution described below. (University Physics 1: Thermodynamics)arrow_forwardAn astronomer discovered two planets, X and Y, orbiting a star. From the perspective of the astronomer, the planets orbit the star as depicted in the figures. Five years ago, the planets were in the position shown in figure (a), with X, Y, and the star in a straight line. Today, planet X is in the position shown in figure (b), having made an angular displacement of 90.0°. If the radii of their orbits are in the ratio 5:4, what is the angular displacement of Y? (Give your answer in revolutions.) a b 1/5 × Equate Newton's law of universal gravitation with his second law, noting that the force in this case is a centripetal force, and use the relationship among angular velocity, radius, and linear velocity. Solve for the angular velocity of planet Y, and calculate the angular displacement in revolutions. revolutionsarrow_forward
- Q4. A red ball is placed at point A in the figure below: Second quadrant 3.0 m Third quadrant y First quadrant Fourth quadrant 2.0 m 3.0 m 1.0 m 1. How many images are seen by an observer at point O? 3 images can be seen 2. What are the (x,y) coordinates of the image in the first quadrant? 3. What are the (x,y)coordinates of the image in the second quadrant? 4. What are the (x,y) coordinates of the image in the fourth quadrant? Tarrow_forwardCan you please solve a, b and c showing all steps and final answersarrow_forwardI need help with this problem and an explanation for the solution described below. (University Physics 1: Thermodynamics)arrow_forward
- I need help with this problem and an explanation for the solution described below. (University Physics 1: Thermodynamics)arrow_forwardA bird dives to catch a fish at 5.00 m/s. Biologists say this bird makes a noise at 115.000 Hz. Field biologists are on a stationary boat as the bird approaches them, and they measure the frequency of the bird's sound to be 116.668 Hz. What is the air temperature that day, in degrees Fahrenheit? Express your answer to 3 sig figs. Note: This calculation is very sensitive to rounding. Keep to at least 4 places after the decimal point during your calculations.arrow_forwardA eats of Softe Four adult polar bears, each of mass 440. kg, are adrift on an ice floe in the seawaters of the Arctic Ocean. The ice floe is a rectangular slab, 8.0 m long by 4.0 m wide. If the top of the ice floe is 2.00 m above the water line, how thick is the slab of ice? Express your answer to 3 sig figs in either centimeters or meters.arrow_forward
- I need help with this problem and an explanation for the solution described below. (University Physics 1: Thermodynamics)arrow_forwardI need help with this problem and an explanation for the solution described below. (University Physics 1: Thermodynamics)arrow_forwardI need help with this problem and an explanation for the solution described below. (University Physics 1: Thermodynamics)arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill