Concept explainers
Rank the following single-slit diffraction experiments in order of the size of the angle from the center of the diffraction pattern to the first dark fringe, from largest to smallest: (i) Wavelength 400 nm, slit width 0.20 mm; (ii) wavelength 600 nm, slit width 0.20 mm; (iii) wavelength 400 nm, slit width 0.30 mm; (iv) wavelength 600 nm, slit width 0.30 mm.
Want to see the full answer?
Check out a sample textbook solutionChapter 36 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Additional Science Textbook Solutions
College Physics (10th Edition)
Tutorials in Introductory Physics
University Physics Volume 2
College Physics: A Strategic Approach (4th Edition)
Applied Physics (11th Edition)
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
- A monochromatic beam of light of wavelength 500 nm illuminates a double slit having a slit separation of 2.00 105 m. What is the angle of the second-order bright fringe? (a) 0.050 0 rad (b) 0.025 0 rad (c) 0.100 rad (d) 0.250 rad (e) 0.010 0 radarrow_forwardShow that the distribution of intensity in a double-slit pattern is given by Equation 36.9. Begin by assuming that the total magnitude of the electric field at point P on the screen in Figure 36.4 is the superposition of two waves, with electric field magnitudes E1=E0sintE2=E0sin(t+) The phase angle in in E2 is due to the extra path length traveled by the lower beam in Figure 36.4. Recall from Equation 33.27 that the intensity of light is proportional to the square of the amplitude of the electric field. In addition, the apparent intensity of the pattern is the time-averaged intensity of the electromagnetic wave. You will need to evaluate the integral of the square of the sine function over one period. Refer to Figure 32.5 for an easy way to perform this evaluation. You will also need the trigonometric identity sinA+sinB=2sin(A+B2)cos(AB2)arrow_forwardIn Figure P27.7 (not to scale), let L = 1.20 m and d = 0.120 mm and assume the slit system is illuminated with monochromatic 500-nm light. Calculate the phase difference between the two wave fronts arriving at P when (a) = 0.500 and (b) y = 5.00 mm. (c) What is the value of for which the phase difference is 0.333 rad? (d) What is the value of for which the path difference is /4?arrow_forward
- Both sides of a uniform film that has index of refraction n and thickness d are in contact with air. For normal incidence of light, an intensity minimum is observed in the reflected light at λ2 and an intensity maximum is observed at λ1, where λ1 > λ2. (a) Assuming no intensity minima are observed between λ1 and λ2, find an expression for the integer m in Equations 27.13 and 27.14 in terms of the wavelengths λ1 and λ2. (b) Assuming n = 1.40, λ1 = 500 nm, and λ2 = 370 nm, determine the best estimate for the thickness of the film.arrow_forwardTable P35.80 presents data gathered by students performing a double-slit experiment. The distance between the slits is 0.0700 mm, and the distance to the screen is 2.50 m. The intensity of the central maximum is 6.50 106 W/m2. What is the intensity at y = 0.500 cm? TABLE P35.80arrow_forwardConsider a single-slit diffraction pattern for =589 nm, projected on a screen that is 1.00 m from a slit of width 0.25 mm. How far from the center of the pattern are the centers of the first and second dark fringes?arrow_forward
- A monochromatic light of unknown wavelength is incident on a slit of width 20 m. A diffraction pattern is seen at a screen 2.5 m away where the central maximum is spread over a distance of 10.0 cm. Find the wavelength.arrow_forwardConsider a wave passing through a single slit. What happens to the width of the central maximum of its diffraction pattern as the slit is made half as wide? (a) It becomes one-fourth as wide. (b) It becomes one-half as wide. (c) Its width does not change. (d) It becomes twice as wide. (e) It becomes four times as wide.arrow_forwardA microwave of an unknown wavelength is incident on a single slit of width 6 cm. The angular width of the central peak is found to be 25°. Find the wavelength.arrow_forward
- When a monochromatic light of wavelength 430 nm incident on a double slit of slit separation 5 m, there are 11 interference fringes in its central maximum. How many interference fringes will be in the central maximum of a light of wavelength 632.8 nm for the same double slit?arrow_forwardConsider the single-slit diffraction pattern for =600 nm, D=0.025 mm , and x=2.0 m. Find the intensity in terms of Io at =0.5 , 1.0°, 1.5°, 3.0°, and 10.0°.arrow_forwardIn a double-slit diffraction experiment, two slits of width 12.4 x 10-6 m are separated by a distance of 32.2 x 10-6 m, and the wavelength of the incident light is 671 nm. The diffraction pattern is viewed on a screen 4.63 m from the slits. Assume Ip is the intensity at a point P, a distance y= 69.8 cm on the screen from the central maximum. Find the ratio of the intensity at P and the intensity at the center of the diffraction pattern (I), Ip/Io. i Hint The ratio of the intensities is given by = (sin(a)) ² Ip Io Save for Later cos (B)². Submit Answerarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning