Concept explainers
A single-slit diffraction pattern is formed by monochromatic
Want to see the full answer?
Check out a sample textbook solutionChapter 36 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Additional Science Textbook Solutions
University Physics Volume 1
College Physics
Physics (5th Edition)
College Physics
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
The Cosmic Perspective Fundamentals (2nd Edition)
- A monochromatic beam of light of wavelength 500 nm illuminates a double slit having a slit separation of 2.00 105 m. What is the angle of the second-order bright fringe? (a) 0.050 0 rad (b) 0.025 0 rad (c) 0.100 rad (d) 0.250 rad (e) 0.010 0 radarrow_forwardHow many helium atoms, each with a radius of about 31 pm, must be placed end to end to have a length equal to one wavelength of 470 nm blue light?arrow_forwardThe movable mirror of a Michelson interferometer is attached to one end of a thin metal rod of length 23.3 mm. The other end of the rod is anchored so it does not move. As the temperature of the rod changes from 15°C to 25 C , a change of 14 fringes is observed. The light source is a He Ne laser, =632.8 nm . What is the change in length of the metal bar, and what is its thermal expansion coefficient?arrow_forward
- To save money on making military aircraft invisible to radar, an inventor decides to coat them with a nonreflective material having an index of refraction of 1.20, which is between that of air and the surface of the plane. This, he reasons, should be much cheaper than designing Stealth bombers. (a) What thickness should the coating be to inhibit the reflection of 4.00-cm wavelength radar? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forwardA diffraction grating has 2000 lines per centimeter. At what angle will the first-order maximum be for 520-nmwavelength green light?arrow_forwardA beam of monochromatic green light is diffracted by a slit of width 0.550 mm. The diffraction pattern forms on a wall 2.06 m beyond the slit. The distance between the positions of zero intensity on both sides of the central bright fringe is 4.10 mm. Calculate the wavelength of the light.arrow_forward
- A linearly polarized microwave of wavelength 1.50 cm is directed along the positive x axis. The electric field vector has a maximum value of 175 V/m and vibrates in the xy plane. Assuming the magnetic field component of the wave can be written in the form B = Bmax sin (kx t), give values for (a) Bmax, (b) k, and (c) . (d) Determine in which plane the magnetic field vector vibrates. (e) Calculate the average value of the Poynting vector for this wave. (f) If this wave were directed at normal incidence onto a perfectly reflecting sheet, what radiation pressure would it exert? (g) What acceleration would be imparted to a 500-g sheet (perfectly reflecting and at normal incidence) with dimensions of 1.00 m 0.750 m?arrow_forwardMonochromatic electromagnetic radiation with wavelength l from a distant source passes through a slit. The diffraction pattern is observed on a screen 2.50 m from the slit. If the width of the central maximum is 6.00 mm, what is the slit width a if the wavelength is (a) 500 nm (visible light); (b) 50.0 mm (infrared radiation); (c) 0.500 nm (x rays)?arrow_forwardLight of wavelength 500 nm, near the center of the visible spectrum, enters a human eye. Although pupil diameter varies from person to person, let’s estimate a daytime diameter of 2 mm.(A) Estimate the limiting angle of resolution for this eye, assuming its resolution is limited only by diffraction.arrow_forward
- Two radio antennas are separated by 1.60 m. Both broadcast identical 750 MHz waves. If you walk around the antennas in a circle of radius 10.0 m, how many maxima will you detect?arrow_forwardA beam of light with wavelength of 1.00 µm and M2 = 20 is incident on an aperture of 1.5 mm diameter. a) Calculate the divergence angle of the beam in degrees (give the cone full-angle). b) Calculate the diameter of the beam at a distance of 10.00 m away from the aperture in the propagation direction in units of cm. c) It is given that the longitudinal (temporal) coherence length is 70 times the transverse (spatial) coherence length. Calculate the wavelength linewidth of the light in units of pm.aarrow_forwardProblem 7. After a car is painted, a highly reflective coating is sprayed on to make the car look extra shiny. The index of refraction of the coating is less than the index of refraction of the paint underneath. 14. The minimum thickness needed for this coating is 100 nm. Find the index of refraction of this coating if it is highly reflective for a wavelength = 510 nm, near the center of the visible spectrum. (A) 5.61 (B) 6.94 (C) 3.56 (D) 4.89 (E) 2.55arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill