University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
14th Edition
ISBN: 9780134265414
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 36, Problem 36.10E
Figure 31.12 (Section 31.2) shows a loudspeaker system. Low-frequency sounds are produced by the woofer, which is a speaker with large diameter; the tweeter, a speaker with smaller diameter, produces high-frequency sounds. Use diffraction ideas to explain why the tweeter is more effective for distributing high-frequency sounds uniformly over a room than is the woofer.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Early investigators (including Thomas Young) measured the thickness of wool fibers using diffraction. One early instrument used a collimated beam of 560 nm light to produce a diffraction pattern on a screen placed 30 cm from a single wool fiber. If the fiber’s diameter was 16 μm, what was the width of the central maximum on the screen?
Diffraction can be used to provide a quick test of the size of red blood cells. Blood is smeared onto a slide, and a laser shines through the slide. The size of the cells is very consistent, so the multiple diffraction patterns overlap and produce an overall pattern that is similar to what a single cell would produce. Ideally, the diameter of a red blood cell should be between 7.5 and 8.0 μm. If a 633 nm laser shines through a slide and produces a pattern on a screen 24.0 cm distant, what range of sizes of the central maximum should be expected? Values outside this range might indicate a health concern and warrant further study.
A double slit interference experiment uses a laser emitting light of two adjacent
frequencies v, and v, (v, < v,). The minimum path difference between the interfering
beams for which the interference pattern disappears is
12
Chapter 36 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Ch. 36.1 - Can sound waves undergo diffraction around an...Ch. 36.2 - Rank the following single-slit diffraction...Ch. 36.3 - Coherent electromagnetic radiation is sent through...Ch. 36.4 - Suppose two slits, each of width a, are separated...Ch. 36.5 - What minimum number of slits would be required in...Ch. 36.6 - Prob. 36.6TYUCh. 36.7 - Prob. 36.7TYUCh. 36 - Why can we readily observe diffraction effects for...Ch. 36 - Prob. 36.2DQCh. 36 - You use a lens of diameter D and light of...
Ch. 36 - Light of wavelength and frequency f passes...Ch. 36 - In a diffraction experiment with waves of...Ch. 36 - An interference pattern is produced by four...Ch. 36 - Phasor Diagram for Eight Slits. An interference...Ch. 36 - A rainbow ordinarily shows a range of colors (see...Ch. 36 - Some loudspeaker horns for outdoor concerts (at...Ch. 36 - Figure 31.12 (Section 31.2) shows a loudspeaker...Ch. 36 - Prob. 36.11DQCh. 36 - With which color of light can the Hubble Space...Ch. 36 - At the end of Section 36.4, the following...Ch. 36 - Prob. 36.14DQCh. 36 - Why is a diffraction grating better than a...Ch. 36 - One sometimes sees rows of evenly spaced radio...Ch. 36 - Prob. 36.17DQCh. 36 - Prob. 36.18DQCh. 36 - Ordinary photographic film reverses black and...Ch. 36 - Monochromatic light from a distant source is...Ch. 36 - Parallel rays of green mercury light with a...Ch. 36 - Light of wavelength 585 nm falls on a slit 0.0666...Ch. 36 - Light of wavelength 633 nm from a distant source...Ch. 36 - Diffraction occurs for all types of waves,...Ch. 36 - CP Tsunami! On December 26, 2004, a violent...Ch. 36 - Prob. 36.7ECh. 36 - Monochromatic electromagnetic radiation with...Ch. 36 - Doorway Diffraction. Sound of frequency 1250 Hz...Ch. 36 - Figure 31.12 (Section 31.2) shows a loudspeaker...Ch. 36 - Red light of wavelength 633 nm from a helium neon...Ch. 36 - Public Radio station KXPR-FM in Sacramento...Ch. 36 - Monochromatic light of wavelength 580 nm passes...Ch. 36 - Monochromatic light of wavelength = 620 nm from a...Ch. 36 - A slit 0.240 mm wide is illuminated by parallel...Ch. 36 - Monochromatic light of wavelength 592 nm from a...Ch. 36 - A single-slit diffraction pattern is formed by...Ch. 36 - Parallel rays of monochromatic light with...Ch. 36 - Number of Fringes in a Diffraction Maximum. In...Ch. 36 - Diffraction and Interference Combined. Consider...Ch. 36 - An interference pattern is produced by light of...Ch. 36 - Laser light of wavelength 500.0 nm illuminates two...Ch. 36 - When laser light of wavelength 632.8 nm passes...Ch. 36 - Monochromatic light is at normal incidence on a...Ch. 36 - If a diffraction grating produces its third-order...Ch. 36 - If a diffraction grating produces a third-order...Ch. 36 - Visible light passes through a diffraction grating...Ch. 36 - The wavelength range of the visible spectrum is...Ch. 36 - (a) What is the wavelength of light that is...Ch. 36 - CDs and DVDs as Diffraction Gratings. A laser beam...Ch. 36 - A typical laboratory diffraction grating has 5.00 ...Ch. 36 - Identifying Isotopes by Spectra. Different...Ch. 36 - The light from an iron arc includes many different...Ch. 36 - If the planes of a crystal are 3.50 (1 = 1010 m...Ch. 36 - Prob. 36.35ECh. 36 - Monochromatic x rays are incident on a crystal for...Ch. 36 - Monochromatic light with wavelength 620 nm passes...Ch. 36 - Monochromatic light with wavelength 490 nm passes...Ch. 36 - Two satellites at an altitude of 1200 km are...Ch. 36 - BIO If you can read the bottom row of your doctors...Ch. 36 - The VLBA (Very Long Baseline Array) uses a number...Ch. 36 - Searching for Planets Around Other Stars. If an...Ch. 36 - Hubble Versus Arecibo. The Hubble Space Telescope...Ch. 36 - Photography. A wildlife photographer uses a...Ch. 36 - Observing Jupiter. You are asked to design a space...Ch. 36 - Coherent monochromatic light of wavelength passes...Ch. 36 - BIO Thickness of Human Hair. Although we have...Ch. 36 - CP A loudspeaker with a diaphragm that vibrates at...Ch. 36 - Laser light of wavelength 632.8 nm falls normally...Ch. 36 - Grating Design. Your boss asks you to design a...Ch. 36 - Measuring Refractive Index. A thin slit...Ch. 36 - Underwater Photography. An underwater camera has a...Ch. 36 - CALC The intensity of light in the Fraunhofer...Ch. 36 - A slit 0.360 mm wide is illuminated by parallel...Ch. 36 - CP CALC In a large vacuum chamber, monochromatic...Ch. 36 - CP In a laboratory, light from a particular...Ch. 36 - What is the longest wavelength that can be...Ch. 36 - It has been proposed to use an array of infrared...Ch. 36 - A diffraction grating has 650 slits/mm. What is...Ch. 36 - Quasars, an abbreviation for quasi-stellar radio...Ch. 36 - A glass sheet is covered by a very thin opaque...Ch. 36 - BIO Resolution of the Eye. The maximum resolution...Ch. 36 - DATA While researching the use of laser pointers,...Ch. 36 - DATA Your physics study partner tells you that the...Ch. 36 - DATA At the metal fabrication company where you...Ch. 36 - Intensity Pattern of N Slits. (a) Consider an...Ch. 36 - CALC Intensity Pattern of N Silts, Continued. Part...Ch. 36 - CALC It is possible to calculate the intensity in...Ch. 36 - Prob. 36.69PPCh. 36 - BRAGG REFLECTION ON A DIFFERENT SCALE. A colloid...Ch. 36 - Prob. 36.71PP
Additional Science Textbook Solutions
Find more solutions based on key concepts
What happens during the fight or flight response?
Conceptual Integrated Science
Repeat Problem 38 for the case n = 1.75, = 40, and 1 = 25.
Essential University Physics (3rd Edition)
By what fraction will the frequencies produced by a wind instrument change when air temperature goes from 10.0°...
University Physics Volume 1
For each situation, tell whether the net work done on a soccer ball is (a) positive, (b) negative, or (c) 0. (1...
Essential University Physics: Volume 1 (3rd Edition)
Torques and tug-of-war. In a study of the biomechanics of the tug-of-war, a 2.0-m-tall, 80.0 kg competitor in t...
College Physics (10th Edition)
(I) Use the parallel-axis theorem to show that the moment of inertia of a thin rod about an axis perpendicular ...
Physics for Scientists and Engineers with Modern Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Table P35.80 presents data gathered by students performing a double-slit experiment. The distance between the slits is 0.0700 mm, and the distance to the screen is 2.50 m. The intensity of the central maximum is 6.50 106 W/m2. What is the intensity at y = 0.500 cm? TABLE P35.80arrow_forwardProblem 18: Consider a single slit that produces its first minimum at 54° for 590 nm light. Randomized Variablesθ1 = 54 °θ1 = 54 °θ2 = 67 °λ1 = 590 nm Part (a) What is the width of the single slit, w, in nanometers?Numeric : A numeric value is expected and not an expression.w = __________________________________________ Part (b) Find the wavelength, in nanometers, of light that has its first minimum at 67°.Numeric : A numeric value is expected and not an expression.λ2 = __________________________________________arrow_forwardIf you hold two fingers very close together and look at a brightlight, you see lines between the fingers. What is happening?(a) You are holding your fingers too close to your eye tobe able to focus on it.(b) You are seeing a diffraction pattern.(c) This is a quantum-mechanical tunneling effect.(d) The brightness of the light is overwhelming your eyearrow_forward
- answer in radianarrow_forwardBabinet's principle says that the diffraction pattern observed when light falls on an aperture of any shape is the same as that obtained when light falls on an object that is the complement of such aperture. A laser with a wavelength of 600 nm is incident on a hair, generating a diffraction pattern with a width of the principal maximum of 10 mm on a screen located 1 m away from the hair. What is the diameter of this wire?arrow_forward10arrow_forward
- When an x-ray beam is scattered off the planes of a crystal, the scattered beam creates an interference pattern. This phenomenon is called Bragg scattering. For an observer to measure an interference maximum, two conditions have to be satisfied: 1. The angle of incidence has to be equal to the angle of reflection. 2. The difference in the beam's path from a source to an observer for neighboring planes has to be equal to an integer multiple of the wavelength; that is, 2d sin(0) = mx for m = 1, 2, .... The path difference 2d sin(0) can be determined from the diagram (Figure 1). The second condition is known as the Bragg condition. Figure 1 of 1 d sine d sine Review nstants Part A An x-ray beam with wavelength 0.260 nm is directed at a crystal. As the angle of incidence increases, you observe the first strong interference maximum at an angle 20.5 °. What is the spacing d between the planes of the crystal? Express your answer in nanometers to four significant figures. VE ΑΣΦ ? d = nm…arrow_forwardQ1/ A/ Consider a resonator consisting of two concave spherical mirrors both with radius of curvature 4 m and separated by a distance of 1 m. Calculate the minimum beam diameter of the TEMy mode at the resonator center and on the mirrors when the laser oscillation is Art laser wavelength 2=514.5 nm. Then, Find if this cavity is stable or not. B/ One of the mirrors in A is replaced by a concave mirror of 1.5m radius of curvature, calculate the position of minimum beam radius. Then calculate the beam waist and radius of curvature at 150 cm from M1.arrow_forward** 38. Two plastic plates (index of refraction n = 1.3) are separated by an air gap of 0.9 µm. Analyze the reflections of light of wavelength 600 nm and conclude whether it will be brightly reflected or not. 0.9 um gap ** 39. The air gap in the previous problem is now filled with a mineral oil whose index of refraction is n = 1.5. Analyze the reflections of light of wavelength 600 nm and conclude if it will be brightly reflected or not.arrow_forward
- There is a microscope that uses a wavelength of 470 nm and is designed to resolve objects of size 8,373 nm (which is defined by the Rayleigh criterion) and uses an objective lens with a diameter that is 3.90 mm. In mm, what's the max distance between the objective lens and the object that is being magnified?arrow_forwardIn an interference arrangement similar to Young's double-slit experiment, the slits S₁ and S₂ are illuminated with coherent microwave sources, each of frequency 106 Hz. The sources are synchronized to have zero phase difference. The slits are separated by a distance d = 150.0m. The intensity I (0) is measured asarrow_forwardConsider a laser light illuminating a vertical thin film of polystyrene (n=1.55) of thickness t= 85 nm The thin film is surrounded by air. What should the wavelength of the laser be to observe a bright interference O lambda=403 nm O lambda=527 nm lambda=566 nm lambda= 75 nm lambda=371 nmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY