Concept explainers
CALC The intensity of light in the Fraunhofer diffraction pattern of a single slit is given by Eq. (36.5). Let γ = β/2. (a) Show that the equation for the values of γ at which I is a maximum is tan γ = γ. (b) Determine the two smallest positive values of γ that are solutions of this equation. (Hint: You can use a trial-and-error procedure. Guess a value of γ and adjust your guess to bring tan γ closer to γ. A graphical solution of the equation is very helpful in locating the solutions approximately, to get good initial guesses.) (c) What are the positive values of γ for the first, second, and third minima on one side of the central maximum? Are the γ values in part (b) precisely halfway between the γ values for adjacent minima? (d) If a = 12λ, what are the angles θ (in degrees) that locate the first minimum, the first maximum beyond the central maximum, and the second minimum?
Want to see the full answer?
Check out a sample textbook solutionChapter 36 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Additional Science Textbook Solutions
The Cosmic Perspective Fundamentals (2nd Edition)
An Introduction to Thermal Physics
Conceptual Integrated Science
Lecture- Tutorials for Introductory Astronomy
Introduction to Electrodynamics
Conceptual Physics (12th Edition)
- (a) What is the minimum angular spread of a 633-nm wavelength He-Ne laser beam that is originally 1.00 mm in diameter? (b) If this laser is aimed at a mountain cliff 15.0 km away, how big will the illuminated spot be? (c) How big a spot would be illuminated on the moon, neglecting atmospheric effects? (This might be done to hit a corner reflector to measure the round-trip time and, hence, distance.)arrow_forwardWhen x - ray incident to the layer of Aluminum , and the transmitted intensity was 10 % from the original incident ray when the thickness of Aluminum was 2 cm , if the density of Aluminum is (2.7gm/cm .^3) , then the Half: Value Layer equal to 1.626 cm. O 0.601 cm . O 3.108 cm. O Please I need an answer within 30 minutesarrow_forwardX-ray diffractionanalysis(using a Cu anode)of a specimen with a known cubiccrystal structure reveals that the peak generated as a result of reflection from the (110) plane occurs at a 2θ=32°. Determine the unit cell volume of this materialarrow_forward
- Problem 5: Consider a 525 nm light falling on a single slit of width 1.3 µm. Randomized Variables λ = 525 nm w = 1.3 μm At what angle (in degrees) is the first minimum for the light? 0 = || sin() cos() cotan() asin() atan() acotan() cosh() tanh() O Degrees tan() acos() sinh() cotanh() Radians π () E ^^^ 4 5 1 2 7 8 9 6 3 * + 0 VO BACKSPACE DEL HOME END CLEARarrow_forwardProblem 6: A red laser (1 = 597 nm) is incident on a diffraction grating that has n= 1100 lines per c Randomized Variables 1= 597 nm n = 1100 lines/cm Part (a) What is the angle, in radians, that the first order maximum makes, 0,? 61 = sin() cos() tan() 7 8 HOME cotan() asin() acos) E 4 5 6 atan() acotan() sinh() 1 2 3 cosh() tanh() cotanh() END Degrees Radians VOl BACKSPACE CLEAR DEL Submit Hint Feedback I give up! Part (b) What is the angle of the fourth order maximum, O4, in radians? +arrow_forwardQ3: For BCC iron, compute (a) the interplanar spacing and (b) the diffraction angle for the (220) set of planes. The lattice parameter for Fe is 0.2866 nm. Also, assume that monochromatic radiation having a wavelength of 0.1790 nm is used, and the order of reflection is 1. (1arrow_forward
- First-order Bragg scattering from a certain crystal occurs at an angle of incidence of 63.8°; see figure below. The wavelength of the x-rays is 0.261nm. Assuming that the scattering is from the dashed planes shown, find the unit cell size ao. 63.8° X raysarrow_forwardIf we treat a double slit experiment as a point-like source where distances from the slits are measured by r₁ and r2 respectively, a plane wave from each slit would Ae-i where ;=kr; -wt+do and 01 - 02= take the form ₁ Ae-i1 and 2: = = k(r₁ r₂). 1. Solve for the probability density ₁+ 22 in terms of A, k, r₁ and r2. -arrow_forwardX-rays of an unknown wavelength are diffracted 43.4° by copper. Separate determinations indicate that this diffraction line for copper is the first-order line for d111. What is the wave- length of the x-rays? The same wavelength is used to analyze tungsten. What is the angle, 20, for the second-order diffraction lines of the do10 spacings?arrow_forward
- X-ray diffraction analysis (using a Cu anode) of a specimen with a known cubic crystal structure reveals that the peak generated as a result of reflection from the (110) plane occurs at a 20=32°. Determine the unit cell volume of this materialarrow_forwardPROBLEM For a given x-ray diffraction test (n = 1) on a cubic crystal structure, the recorded diffraction peaks (20) were 24.09°, 34.33°, 42.37°, 49.33°, 55.62°, and 61.48°. The x-ray wavelength used in the test was 0.15418 nm. For this test, determine the crystal structure of the element, the lattice constant, and identify the element.arrow_forwardA 475 nm wavelength spectral line is actually a doublet, 0.0043 nm separation. (a) What is the smallest number of lines that a diffraction network needs to have to separate this doublet in the 2nd order spectrum? (b) If this network is 10 cm long, in what direction will the line be observed in this spectrum? What will be the angular separation between the two components?arrow_forward
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning