Concept explainers
(a)
The position of the objects image x ′
as a function of the objects position x
.
(a)
Answer to Problem 50AP
Explanation of Solution
Given info: The initial position of the object is
The formula to calculate the focal length is,
Here,
Consider the position of the image is
Substitute
Thus, the position of the image for the minimum magnification is
The formula to calculate the image position with respect to the object position is,
Substitute
Conclusion
Therefore, the position of the objects image
(b)
The pattern of the images motion with reference to a table of values.
(b)
Answer to Problem 50AP
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Explanation of Solution
Given info: The initial position of the object is
The formula to calculate the image distance is,
Taking the integer value of the position of the object as the integer values between
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Conclusion
Therefore, the pattern of the images motion with reference to a table of values is shown below.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(c)
The distance that the image moves when the object moves 12.0 cm
to the right.
(c)
Answer to Problem 50AP
Explanation of Solution
Given info: The initial position of the object is
The formula to calculate the image distance is,
Substitute
The image position at
Conclusion
Therefore, the image moves from infinity to beyond when the object moves
(d)
The direction of the image when the object moves 12.0 cm
to the right.
(d)
Answer to Problem 50AP
Explanation of Solution
Given info: The initial position of the object is
The formula to calculate the image distance is,
The direction of the movement of the image is always right but the direction is left during the time when the image jumps to a negative infinite value form the positive infinite value. The image first moves in the positive
Conclusion
Therefore, the direction of the image movement is right but is opposite during the jump when the object moves
Want to see more full solutions like this?
Chapter 35 Solutions
Physics for Scientists and Engineers
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning