(a)
The image position of the fishes that are located at 5.00 cm
and 25.0 cm
in front of the aquarium wall.
(a)
Answer to Problem 19P
Explanation of Solution
Given info: The radius of curvature of the curved plastic is
The formula to calculate image position of the fish inside the aquarium is,
Here,
The radius of curvature will be negative the centre of curvature lies on the object side.
For part (i): when the fish is at
Substitute
The image position for the fish at
For part (ii) when the fish is at
From equation (2) the image position is,
The image is at
Conclusion:
Therefore, the image is
(b)
The magnification of the images for part (a)
(b)
Answer to Problem 19P
Explanation of Solution
Explanation
Given info: The radius of curvature of the curved plastic is
The formula to calculate the magnification of the image is,
For part (i): when the fish is at
Substitute
Thus when the fish is at
For part (ii): when the fish is at
Substitute
Thus when the fish is at
Conclusion:
Therefore, when the fish is at
(c)
The reason refractive index of the plastic is not required to solve the problem.
(c)
Answer to Problem 19P
Explanation of Solution
Explanation
The plastic has uniform thickness and the surface from which the ray is entering and the surface from which is leaving are parallel to each other. The ray might get slightly displaced, but it will not change the direction of its propagation by going through plastic air interface. The only difference will be due to water-air interface.
Conclusion:
Therefore, the ray might get slightly displaced, but it will not change the direction of its propagation by going through plastic air interface. So the refractive index of plastic is not playing any major role in light propagation.
(e)
The image distance of the fish is greater than the fish itself and the magnification
(e)
Answer to Problem 19P
Explanation of Solution
Explanation
For the object distance greater than the radius of curvature the image distance will greater than the distance at which fish is itself. If the aquarium were very long the radius of curvature will not increase therefore if the object distance is more than the radius of curvature the image of the fish will be at even farther distance away from the fish itself.
Conclusion:
Therefore, If the fish is present at distance larger than the radius of curvature the image of the fish would be even farther than that of fish itself.
(d)
The magnification of the image when the image of the fish is even farther than the position of fish itself.
(d)
Answer to Problem 19P
Explanation of Solution
For the condition
Formula to calculate the image distance from Lens formula
Substitute
For the condition
Take reciprocal of the above question
Formula to calculate the image distance from Lens formula,
Divide by
The condition is when the image distance is greater than the radius of curvature take the magnitude of the equation.
Substitute
The reciprocal of the equation is
Thus the image of the fish will also be at greater distance than that of radius of curvature.
An example for the above case is let the fish is at twice the distance of the magnitude of radius of curvature.
The image of the fish is calculated from the formula from equation (7).
Substitute
Thus the image of the fish is
The formula to calculate the magnification of the image is,
Substitute
Thus the magnification of the fish image is
Conclusion:
Therefore, if the fish is present at distance larger than the radius of curvature the image of the fish would be even farther than that of fish itself.
Want to see more full solutions like this?
Chapter 35 Solutions
Physics for Scientists and Engineers
- 1. A charge of -25 μC is distributed uniformly throughout a spherical volume of radius 11.5 cm. Determine the electric field due to this charge at a distance of (a) 2 cm, (b) 4.6 cm, and (c) 25 cm from the center of the sphere. (a) = = (b) E = (c)Ẻ = = NC NC NCarrow_forward1. A long silver rod of radius 3.5 cm has a charge of -3.9 ис on its surface. Here ŕ is a unit vector ст directed perpendicularly away from the axis of the rod as shown in the figure. (a) Find the electric field at a point 5 cm from the center of the rod (an outside point). E = N C (b) Find the electric field at a point 1.8 cm from the center of the rod (an inside point) E=0 Think & Prepare N C 1. Is there a symmetry in the charge distribution? What kind of symmetry? 2. The problem gives the charge per unit length 1. How do you figure out the surface charge density σ from a?arrow_forward1. Determine the electric flux through each surface whose cross-section is shown below. 55 S₂ -29 S5 SA S3 + 9 Enter your answer in terms of q and ε Φ (a) s₁ (b) s₂ = -29 (C) Φ զ Ερ (d) SA = (e) $5 (f) Sa $6 = II ✓ -29 S6 +39arrow_forward
- No chatgpt pls will upvotearrow_forwardthe cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forward
- The shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along its axis. 5.6 m. 4 m- B Part A Determine the compressive force along leg AB. Express your answer to three significant figures and include the appropriate units. FAB = Value Submit Request Answer Part B Units ? Determine the compressive force along leg CB. Express your answer to three significant figures and include the appropriate units. FCB= Value Submit Request Answer Part C ? Units Determine the tension in the winch cable DB. Express your answer with the appropriate units. 2marrow_forwardPart A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?arrow_forwardThe particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-arrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax