A uniform film of TiO 2 , 1036 nm thick and having index of refraction 2.62, is spread uniformly over the surface of crown glass of refractive index 1.52. Light of wavelength 520.0 nm falls at normal incidence onto the film from air. You want to increase the thickness of this film so that the reflected light cancels. (a) What is the minimum thickness of TiO 2 that you must add so the reflected light cancels as desired? (b) After you make the adjustment in part (a), what is the path difference between the light reflected off the top of the film and the light that cancels it after traveling through the film? Express your answer in (i) nanometers and (ii) wavelengths of the light in the TiO 2 film.
A uniform film of TiO 2 , 1036 nm thick and having index of refraction 2.62, is spread uniformly over the surface of crown glass of refractive index 1.52. Light of wavelength 520.0 nm falls at normal incidence onto the film from air. You want to increase the thickness of this film so that the reflected light cancels. (a) What is the minimum thickness of TiO 2 that you must add so the reflected light cancels as desired? (b) After you make the adjustment in part (a), what is the path difference between the light reflected off the top of the film and the light that cancels it after traveling through the film? Express your answer in (i) nanometers and (ii) wavelengths of the light in the TiO 2 film.
Solution Summary: The author determines the minimum thickness of TiO 2 that must be added so that the reflected light cancels as desired.
A uniform film of TiO2, 1036 nm thick and having index of refraction 2.62, is spread uniformly over the surface of crown glass of refractive index 1.52. Light of wavelength 520.0 nm falls at normal incidence onto the film from air. You want to increase the thickness of this film so that the reflected light cancels. (a) What is the minimum thickness of TiO2 that you must add so the reflected light cancels as desired? (b) After you make the adjustment in part (a), what is the path difference between the light reflected off the top of the film and the light that cancels it after traveling through the film? Express your answer in (i) nanometers and (ii) wavelengths of the light in the TiO2 film.
19:39 ·
C
Chegg
1 69%
✓
The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take
F=1700 lb. (Figure 1)
Figure
800 lb
||-5-
F
600 lb
بتا
D
E
C
BO
10 ft 5 ft 4 ft-—— 6 ft — 5 ft-
Solved Part A The compound
beam is fixed at E and...
Hình ảnh có thể có bản quyền. Tìm hiểu thêm
Problem
A-12
% Chia sẻ
kip
800 lb
Truy cập )
D Lưu
of
C
600 lb
|-sa+ 10ft 5ft 4ft6ft
D
E
5 ft-
Trying
Cheaa
Những kết quả này có
hữu ích không?
There are pins at C and D To F-1200 Egue!)
Chegg
Solved The compound b...
Có Không ☑
|||
Chegg
10
וח
No chatgpt pls will upvote
No chatgpt pls will upvote
Chapter 35 Solutions
University Physics with Modern Physics (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.