![Calculus: Graphical, Numerical, Algebraic](https://www.bartleby.com/isbn_cover_images/9780133688399/9780133688399_largeCoverImage.gif)
Concept explainers
a.
To graph: the derivative of the fruit fly population. The graph of the population is reproduced below and what units should be used on the horizontal and vertical axes for the derivative’s graph.
a.
![Check Mark](/static/check-mark.png)
Answer to Problem 7E
The units for derivative graph are days for horizontal axis (x-axis) and flies per day for the vertical axis (y-axis).
Explanation of Solution
Given information: Populations starting out in closed environments grow slowly at first, when there are relatively few members, then more rapidly as the number of reproducing individual increases and resources are still abundant , then slowly again as the population reaches the carrying capacity of the environment. The graph of the population is reproduced is given below.
Calculation:
Estimate the slopes at x =0, 10, and 20,30,40,50 by drawing tangent lines at each value:
The estimated slopes of the tangent lines are about 0.5 for t =0, 3 for t =10, 13 for t =20, 14 for t =30, 3.5 for t =40, and 0.5 for t =50. The points on the graph of the derivative are then about (0,0.5),(10,3),(20,13),(30,14),(40,3.5), and (50,0.5). Plot these points and connect them with a smooth curve to make the graph of the derivative :
Since the dependent variable for the original graph was flies and the independent variable was days, the units for derivative graph are days for horizontal axis(x-axis) and flies per day for the vertical axis (y-axis).
b.
To find: during what days does the population seem to be increasing fastest, slowest.
b.
![Check Mark](/static/check-mark.png)
Answer to Problem 7E
Fastest: Day 25 and Slowest: Day 0 or Day 50.
Explanation of Solution
Given information: Populations starting out in closed environments grow slowly at first, when there are relatively few members, then more rapidly as the number of reproducing individual increases and resources are still abundant , then slowly again as the population reaches the carrying capacity of the environment. The graph of the population is reproduced is given below.
Calculation:
The derivative graph is shown below.
From the derivative graph, the maximum of the derivative graph was around t =25.
So, Increasing the fastest: Around the 25th day.
From the derivative graph, the minimum of the derivative graph was around t =0 and t =50.
So, increasing the slowest: Day 0 or Day 50.
Chapter 3 Solutions
Calculus: Graphical, Numerical, Algebraic
Additional Math Textbook Solutions
Calculus: Early Transcendentals (2nd Edition)
Elementary Statistics (13th Edition)
Elementary Statistics: Picturing the World (7th Edition)
Algebra and Trigonometry (6th Edition)
Basic Business Statistics, Student Value Edition
A First Course in Probability (10th Edition)
- Use the information to find and compare Δy and dy. (Round your answers to four decimal places.) y = x4 + 7 x = −3 Δx = dx = 0.01 Δy = dy =arrow_forward4. A car travels in a straight line for one hour. Its velocity, v, in miles per hour at six minute intervals is shown in the table. For each problem, approximate the distance the car traveled (in miles) using the given method, on the provided interval, and with the given number of rectangles or trapezoids, n. Time (min) 0 6 12 18|24|30|36|42|48|54|60 Speed (mph) 0 10 20 40 60 50 40 30 40 40 65 a.) Left Rectangles, [0, 30] n=5 b.) Right Rectangles, [24, 42] n=3 c.) Midpoint Rectangles, [24, 60] n=3 d.) Trapezoids, [0, 24] n=4arrow_forwardThe bracket BCD is hinged at C and attached to a control cable at B. Let F₁ = 275 N and F2 = 275 N. F1 B a=0.18 m C A 0.4 m -0.4 m- 0.24 m Determine the reaction at C. The reaction at C N Z F2 Darrow_forward
- The correct answer is C,i know that we need to use stokes theorem and parametrize the equations then write the equation F with respect to the curve but i cant seem to find a way to do it, the integral should be from 0 to 2pi but i might be wrongcould you show me the steps to get to 18piarrow_forwardA 10-ft boom is acted upon by the 810-lb force as shown in the figure. D 6 ft 6 ft E B 7 ft C 6 ft 4 ft W Determine the tension in each cable and the reaction at the ball-and-socket joint at A. The tension in cable BD is lb. The tension in cable BE is lb. The reaction at A is ( lb) i + Ib) j. (Include a minus sign if necessary.)arrow_forwardthe correct answer is A could you show me whyarrow_forward
- Good Day, Kindly assist me with this query.arrow_forwardon donne f(x) da fonction derive dhe do fonction fcsos calcule f'(x) orans chacun des Cas sulants: 3 1) f(x)=5x-11, 2- f (x) = ->³ 3-1(x) = x² 12x +π; 4-f(x)=- 5-f(x) = 33-4x6-609)=-3x²+ 7= f(x) = x + 1.8-f(x) = 4 s-f(x) = x++ X+1 -x-1 2 I 3x-4 девоarrow_forwardThe correct answer is Ccould you show me how to do it by finding a0 and and akas well as setting up the piecewise function and integratingarrow_forward
- T 1 7. Fill in the blanks to write the calculus problem that would result in the following integral (do not evaluate the interval). Draw a graph representing the problem. So π/2 2 2πxcosx dx Find the volume of the solid obtained when the region under the curve on the interval is rotated about the axis.arrow_forward38,189 5. Draw a detailed graph to and set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region bounded by the curve: y = cos²x_for_ |x| ≤ and the curve y y = about the line x = =플 2 80 F3 a FEB 9 2 7 0 MacBook Air 3 2 stv DGarrow_forwardFind f(x) and g(x) such that h(x) = (fog)(x) and g(x) = 3 - 5x. h(x) = (3 –5x)3 – 7(3 −5x)2 + 3(3 −5x) – 1 - - - f(x) = ☐arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)