Geometry, Student Edition
1st Edition
ISBN: 9780078884849
Author: McGraw-Hill, McGraw Hill
Publisher: Glencoe/McGraw-Hill School Pub Co
expand_more
expand_more
format_list_bulleted
Question
Chapter 3.3, Problem 70SPR
To determine
To determine if the given information is valid or not.
Expert Solution & Answer
Answer to Problem 70SPR
Given conclusion is invalid.
Explanation of Solution
Given information :
Given:
Conclusion:
According to vertical angles theorem, vertical angles are always congruent.
But this is not always true that if the angles are congruent then they will be vertical angles.
Therefore we can say that the given conclusion is invalid.
Chapter 3 Solutions
Geometry, Student Edition
Ch. 3.1 - Prob. 1ACYPCh. 3.1 - Prob. 1BCYPCh. 3.1 - Prob. 1CCYPCh. 3.1 - Prob. 2ACYPCh. 3.1 - Prob. 2BCYPCh. 3.1 - Prob. 2CCYPCh. 3.1 - Prob. 2DCYPCh. 3.1 - Prob. 3ACYPCh. 3.1 - Prob. 3BCYPCh. 3.1 - Prob. 3CCYP
Ch. 3.1 - Prob. 3DCYPCh. 3.1 - Prob. 1CYUCh. 3.1 - Prob. 2CYUCh. 3.1 - Prob. 3CYUCh. 3.1 - Prob. 4CYUCh. 3.1 - Prob. 5CYUCh. 3.1 - Prob. 6CYUCh. 3.1 - Prob. 7CYUCh. 3.1 - Prob. 8CYUCh. 3.1 - Prob. 9CYUCh. 3.1 - Prob. 10CYUCh. 3.1 - Prob. 11CYUCh. 3.1 - Prob. 12CYUCh. 3.1 - Prob. 13PPSCh. 3.1 - Prob. 14PPSCh. 3.1 - Prob. 15PPSCh. 3.1 - Prob. 16PPSCh. 3.1 - Prob. 17PPSCh. 3.1 - Prob. 18PPSCh. 3.1 - Prob. 19PPSCh. 3.1 - Prob. 20PPSCh. 3.1 - Prob. 21PPSCh. 3.1 - Prob. 22PPSCh. 3.1 - Prob. 23PPSCh. 3.1 - Prob. 24PPSCh. 3.1 - Prob. 25PPSCh. 3.1 - Prob. 26PPSCh. 3.1 - Prob. 27PPSCh. 3.1 - Prob. 28PPSCh. 3.1 - Prob. 29PPSCh. 3.1 - Prob. 30PPSCh. 3.1 - Prob. 31PPSCh. 3.1 - Prob. 32PPSCh. 3.1 - Prob. 33PPSCh. 3.1 - Prob. 34PPSCh. 3.1 - Prob. 35PPSCh. 3.1 - Prob. 36PPSCh. 3.1 - Prob. 37PPSCh. 3.1 - Prob. 38PPSCh. 3.1 - Prob. 39PPSCh. 3.1 - Prob. 40PPSCh. 3.1 - Prob. 41PPSCh. 3.1 - Prob. 42PPSCh. 3.1 - Prob. 43PPSCh. 3.1 - Prob. 44PPSCh. 3.1 - Prob. 45PPSCh. 3.1 - Prob. 46HPCh. 3.1 - Prob. 47HPCh. 3.1 - Prob. 48HPCh. 3.1 - Prob. 49HPCh. 3.1 - Prob. 50HPCh. 3.1 - Prob. 51STPCh. 3.1 - Prob. 52STPCh. 3.1 - Prob. 53STPCh. 3.1 - Prob. 54STPCh. 3.1 - Prob. 55SPRCh. 3.1 - Prob. 56SPRCh. 3.1 - Prob. 57SPRCh. 3.1 - Prob. 58SPRCh. 3.1 - Prob. 59SPRCh. 3.1 - Prob. 60SPRCh. 3.1 - Prob. 61SRCh. 3.1 - Prob. 62SRCh. 3.1 - Prob. 63SRCh. 3.2 - Prob. 1ACYPCh. 3.2 - Prob. 1BCYPCh. 3.2 - Prob. 1CCYPCh. 3.2 - Prob. 2ACYPCh. 3.2 - Prob. 2BCYPCh. 3.2 - Prob. 3ACYPCh. 3.2 - Prob. 3BCYPCh. 3.2 - Prob. 1CYUCh. 3.2 - Prob. 2CYUCh. 3.2 - Prob. 3CYUCh. 3.2 - Prob. 4CYUCh. 3.2 - Prob. 5CYUCh. 3.2 - Prob. 6CYUCh. 3.2 - Prob. 7CYUCh. 3.2 - Prob. 8CYUCh. 3.2 - Prob. 9CYUCh. 3.2 - Prob. 10CYUCh. 3.2 - Prob. 11PPSCh. 3.2 - Prob. 12PPSCh. 3.2 - Prob. 13PPSCh. 3.2 - Prob. 14PPSCh. 3.2 - Prob. 15PPSCh. 3.2 - Prob. 16PPSCh. 3.2 - Prob. 17PPSCh. 3.2 - Prob. 18PPSCh. 3.2 - Prob. 19PPSCh. 3.2 - Prob. 20PPSCh. 3.2 - Prob. 21PPSCh. 3.2 - Prob. 22PPSCh. 3.2 - Prob. 23PPSCh. 3.2 - Prob. 24PPSCh. 3.2 - Prob. 25PPSCh. 3.2 - Prob. 26PPSCh. 3.2 - Prob. 27PPSCh. 3.2 - Prob. 28PPSCh. 3.2 - Prob. 29PPSCh. 3.2 - Prob. 30PPSCh. 3.2 - Prob. 31PPSCh. 3.2 - Prob. 32PPSCh. 3.2 - Prob. 33PPSCh. 3.2 - Prob. 34PPSCh. 3.2 - Prob. 35PPSCh. 3.2 - Prob. 36PPSCh. 3.2 - Prob. 37PPSCh. 3.2 - Prob. 38PPSCh. 3.2 - Prob. 39PPSCh. 3.2 - Prob. 40PPSCh. 3.2 - Prob. 41PPSCh. 3.2 - Prob. 42HPCh. 3.2 - Prob. 43HPCh. 3.2 - Prob. 44HPCh. 3.2 - Prob. 45HPCh. 3.2 - Prob. 46HPCh. 3.2 - Prob. 47STPCh. 3.2 - Prob. 48STPCh. 3.2 - Prob. 49STPCh. 3.2 - Prob. 50STPCh. 3.2 - Prob. 51SPRCh. 3.2 - Prob. 52SPRCh. 3.2 - Prob. 53SPRCh. 3.2 - Prob. 54SPRCh. 3.2 - Prob. 55SPRCh. 3.2 - Prob. 56SRCh. 3.2 - Prob. 57SRCh. 3.2 - Prob. 58SRCh. 3.2 - Prob. 59SRCh. 3.2 - Prob. 60SRCh. 3.2 - Prob. 61SRCh. 3.3 - Prob. 1ACYPCh. 3.3 - Prob. 1BCYPCh. 3.3 - Prob. 1CCYPCh. 3.3 - Prob. 1DCYPCh. 3.3 - Prob. 2CYPCh. 3.3 - Prob. 3ACYPCh. 3.3 - Prob. 3BCYPCh. 3.3 - Prob. 4CYPCh. 3.3 - Prob. 1CYUCh. 3.3 - Prob. 2CYUCh. 3.3 - Prob. 3CYUCh. 3.3 - Prob. 4CYUCh. 3.3 - Prob. 5CYUCh. 3.3 - Prob. 6CYUCh. 3.3 - Prob. 7CYUCh. 3.3 - Prob. 8CYUCh. 3.3 - Prob. 9CYUCh. 3.3 - Prob. 10CYUCh. 3.3 - Prob. 11CYUCh. 3.3 - Prob. 12PPSCh. 3.3 - Prob. 13PPSCh. 3.3 - Prob. 14PPSCh. 3.3 - Prob. 15PPSCh. 3.3 - Prob. 16PPSCh. 3.3 - Prob. 17PPSCh. 3.3 - Prob. 18PPSCh. 3.3 - Prob. 19PPSCh. 3.3 - Prob. 20PPSCh. 3.3 - Prob. 21PPSCh. 3.3 - Prob. 22PPSCh. 3.3 - Prob. 23PPSCh. 3.3 - Prob. 24PPSCh. 3.3 - Prob. 25PPSCh. 3.3 - Prob. 26PPSCh. 3.3 - Prob. 27PPSCh. 3.3 - Prob. 28PPSCh. 3.3 - Prob. 29PPSCh. 3.3 - Prob. 30PPSCh. 3.3 - Prob. 31PPSCh. 3.3 - Prob. 32PPSCh. 3.3 - Prob. 33PPSCh. 3.3 - Prob. 34PPSCh. 3.3 - Prob. 35PPSCh. 3.3 - Prob. 36PPSCh. 3.3 - Prob. 37PPSCh. 3.3 - Prob. 38PPSCh. 3.3 - Prob. 39PPSCh. 3.3 - Prob. 40PPSCh. 3.3 - Prob. 41PPSCh. 3.3 - Prob. 42PPSCh. 3.3 - Prob. 43PPSCh. 3.3 - Prob. 44PPSCh. 3.3 - Prob. 45PPSCh. 3.3 - Prob. 46PPSCh. 3.3 - Prob. 47PPSCh. 3.3 - Prob. 48PPSCh. 3.3 - Prob. 49PPSCh. 3.3 - Prob. 50PPSCh. 3.3 - Prob. 51PPSCh. 3.3 - Prob. 52HPCh. 3.3 - Prob. 53HPCh. 3.3 - Prob. 54HPCh. 3.3 - Prob. 55HPCh. 3.3 - Prob. 56HPCh. 3.3 - Prob. 57HPCh. 3.3 - Prob. 58STPCh. 3.3 - Prob. 59STPCh. 3.3 - Prob. 60STPCh. 3.3 - Prob. 61STPCh. 3.3 - Prob. 62SPRCh. 3.3 - Prob. 63SPRCh. 3.3 - Prob. 64SPRCh. 3.3 - Prob. 65SPRCh. 3.3 - Prob. 66SPRCh. 3.3 - Prob. 67SPRCh. 3.3 - Prob. 68SPRCh. 3.3 - Prob. 69SPRCh. 3.3 - Prob. 70SPRCh. 3.3 - Prob. 71SPRCh. 3.3 - Prob. 72SRCh. 3.3 - Prob. 73SRCh. 3.3 - Prob. 74SRCh. 3.4 - Prob. 1CYPCh. 3.4 - Prob. 2CYPCh. 3.4 - Prob. 3ACYPCh. 3.4 - Prob. 3BCYPCh. 3.4 - Prob. 4CYPCh. 3.4 - Prob. 5CYPCh. 3.4 - Prob. 6CYPCh. 3.4 - Prob. 1CYUCh. 3.4 - Prob. 2CYUCh. 3.4 - Prob. 3CYUCh. 3.4 - Prob. 4CYUCh. 3.4 - Prob. 5CYUCh. 3.4 - Prob. 6CYUCh. 3.4 - Prob. 7CYUCh. 3.4 - Prob. 8CYUCh. 3.4 - Prob. 9CYUCh. 3.4 - Prob. 10CYUCh. 3.4 - Prob. 11CYUCh. 3.4 - Prob. 12CYUCh. 3.4 - Prob. 13PPSCh. 3.4 - Prob. 14PPSCh. 3.4 - Prob. 15PPSCh. 3.4 - Prob. 16PPSCh. 3.4 - Prob. 17PPSCh. 3.4 - Prob. 18PPSCh. 3.4 - Prob. 19PPSCh. 3.4 - Prob. 20PPSCh. 3.4 - Prob. 21PPSCh. 3.4 - Prob. 22PPSCh. 3.4 - Prob. 23PPSCh. 3.4 - Prob. 24PPSCh. 3.4 - Prob. 25PPSCh. 3.4 - Prob. 26PPSCh. 3.4 - Prob. 27PPSCh. 3.4 - Prob. 28PPSCh. 3.4 - Prob. 29PPSCh. 3.4 - Prob. 30PPSCh. 3.4 - Prob. 31PPSCh. 3.4 - Prob. 32PPSCh. 3.4 - Prob. 33PPSCh. 3.4 - Prob. 34PPSCh. 3.4 - Prob. 35PPSCh. 3.4 - Prob. 36PPSCh. 3.4 - Prob. 37PPSCh. 3.4 - Prob. 38PPSCh. 3.4 - Prob. 39PPSCh. 3.4 - Prob. 40PPSCh. 3.4 - Prob. 41PPSCh. 3.4 - Prob. 42PPSCh. 3.4 - Prob. 43PPSCh. 3.4 - Prob. 44PPSCh. 3.4 - Prob. 45PPSCh. 3.4 - Prob. 46PPSCh. 3.4 - Prob. 47PPSCh. 3.4 - Prob. 48PPSCh. 3.4 - Prob. 49PPSCh. 3.4 - Prob. 50PPSCh. 3.4 - Prob. 51PPSCh. 3.4 - Prob. 52PPSCh. 3.4 - Prob. 53PPSCh. 3.4 - Prob. 54PPSCh. 3.4 - Prob. 55HPCh. 3.4 - Prob. 56HPCh. 3.4 - Prob. 57HPCh. 3.4 - Prob. 58HPCh. 3.4 - Prob. 59HPCh. 3.4 - Prob. 60STPCh. 3.4 - Prob. 61STPCh. 3.4 - Prob. 62STPCh. 3.4 - Prob. 63STPCh. 3.4 - Prob. 64SPRCh. 3.4 - Prob. 65SPRCh. 3.4 - Prob. 66SPRCh. 3.4 - Prob. 67SPRCh. 3.4 - Prob. 68SPRCh. 3.4 - Prob. 69SPRCh. 3.4 - Prob. 70SRCh. 3.4 - Prob. 71SRCh. 3.4 - Prob. 72SRCh. 3.4 - Prob. 73SRCh. 3.5 - Prob. 1ACYPCh. 3.5 - Prob. 1BCYPCh. 3.5 - Prob. 1CCYPCh. 3.5 - Prob. 1DCYPCh. 3.5 - Prob. 1ECYPCh. 3.5 - Prob. 1FCYPCh. 3.5 - Prob. 2CYPCh. 3.5 - Prob. 3CYPCh. 3.5 - Prob. 1CYUCh. 3.5 - Prob. 2CYUCh. 3.5 - Prob. 3CYUCh. 3.5 - Prob. 4CYUCh. 3.5 - Prob. 5CYUCh. 3.5 - Prob. 6CYUCh. 3.5 - Prob. 7CYUCh. 3.5 - Prob. 8PPSCh. 3.5 - Prob. 9PPSCh. 3.5 - Prob. 10PPSCh. 3.5 - Prob. 11PPSCh. 3.5 - Prob. 12PPSCh. 3.5 - Prob. 13PPSCh. 3.5 - Prob. 14PPSCh. 3.5 - Prob. 15PPSCh. 3.5 - Prob. 16PPSCh. 3.5 - Prob. 17PPSCh. 3.5 - Prob. 18PPSCh. 3.5 - Prob. 19PPSCh. 3.5 - Prob. 20PPSCh. 3.5 - Prob. 21PPSCh. 3.5 - Prob. 22PPSCh. 3.5 - Prob. 23PPSCh. 3.5 - Prob. 24PPSCh. 3.5 - Prob. 25PPSCh. 3.5 - Prob. 26PPSCh. 3.5 - Prob. 27PPSCh. 3.5 - Prob. 28PPSCh. 3.5 - Prob. 29PPSCh. 3.5 - Prob. 30PPSCh. 3.5 - Prob. 31PPSCh. 3.5 - Prob. 32PPSCh. 3.5 - Prob. 33PPSCh. 3.5 - Prob. 34PPSCh. 3.5 - Prob. 35PPSCh. 3.5 - Prob. 36PPSCh. 3.5 - Prob. 37HPCh. 3.5 - Prob. 38HPCh. 3.5 - Prob. 39HPCh. 3.5 - Prob. 40HPCh. 3.5 - Prob. 41HPCh. 3.5 - Prob. 42HPCh. 3.5 - Prob. 43HPCh. 3.5 - Prob. 44STPCh. 3.5 - Prob. 45STPCh. 3.5 - Prob. 46STPCh. 3.5 - Prob. 47STPCh. 3.5 - Prob. 48SPRCh. 3.5 - Prob. 49SPRCh. 3.5 - Prob. 50SPRCh. 3.5 - Prob. 51SPRCh. 3.5 - Prob. 52SPRCh. 3.5 - Prob. 53SPRCh. 3.5 - Prob. 54SPRCh. 3.5 - Prob. 55SPRCh. 3.5 - Prob. 56SPRCh. 3.5 - Prob. 57SRCh. 3.6 - Prob. 1CYPCh. 3.6 - Prob. 2CYPCh. 3.6 - Prob. 3ACYPCh. 3.6 - Prob. 3BCYPCh. 3.6 - Prob. 1CYUCh. 3.6 - Prob. 2CYUCh. 3.6 - Prob. 3CYUCh. 3.6 - Prob. 4CYUCh. 3.6 - Prob. 5CYUCh. 3.6 - Prob. 6CYUCh. 3.6 - Prob. 7CYUCh. 3.6 - Prob. 8CYUCh. 3.6 - Prob. 9PPSCh. 3.6 - Prob. 10PPSCh. 3.6 - Prob. 11PPSCh. 3.6 - Prob. 12PPSCh. 3.6 - Prob. 13PPSCh. 3.6 - Prob. 14PPSCh. 3.6 - Prob. 15PPSCh. 3.6 - Prob. 16PPSCh. 3.6 - Prob. 17PPSCh. 3.6 - Prob. 18PPSCh. 3.6 - Prob. 19PPSCh. 3.6 - Prob. 20PPSCh. 3.6 - Prob. 21PPSCh. 3.6 - Prob. 22PPSCh. 3.6 - Prob. 23PPSCh. 3.6 - Prob. 24PPSCh. 3.6 - Prob. 25PPSCh. 3.6 - Prob. 26PPSCh. 3.6 - Prob. 27PPSCh. 3.6 - Prob. 28PPSCh. 3.6 - Prob. 29PPSCh. 3.6 - Prob. 30PPSCh. 3.6 - Prob. 31PPSCh. 3.6 - Prob. 32PPSCh. 3.6 - Prob. 33PPSCh. 3.6 - Prob. 34PPSCh. 3.6 - Prob. 35PPSCh. 3.6 - Prob. 36PPSCh. 3.6 - Prob. 37PPSCh. 3.6 - Prob. 38PPSCh. 3.6 - Prob. 39PPSCh. 3.6 - Prob. 40PPSCh. 3.6 - Prob. 41HPCh. 3.6 - Prob. 42HPCh. 3.6 - Prob. 43HPCh. 3.6 - Prob. 44HPCh. 3.6 - Prob. 45HPCh. 3.6 - Prob. 46HPCh. 3.6 - Prob. 47HPCh. 3.6 - Prob. 48STPCh. 3.6 - Prob. 49STPCh. 3.6 - Prob. 50STPCh. 3.6 - Prob. 51STPCh. 3.6 - Prob. 52SPRCh. 3.6 - Prob. 53SPRCh. 3.6 - Prob. 54SPRCh. 3.6 - Prob. 55SPRCh. 3.6 - Prob. 56SPRCh. 3.6 - Prob. 57SPRCh. 3.6 - Prob. 58SPRCh. 3.6 - Prob. 59SPRCh. 3.6 - Prob. 60SRCh. 3.6 - Prob. 61SRCh. 3.6 - Prob. 62SRCh. 3.6 - Prob. 63SRCh. 3.6 - Prob. 64SRCh. 3.6 - Prob. 65SRCh. 3 - Prob. 1GRFCCh. 3 - Prob. 2GRFCCh. 3 - Prob. 3GRFCCh. 3 - Prob. 4GRFCCh. 3 - Prob. 5GRFCCh. 3 - Prob. 6GRFCCh. 3 - Prob. 7GRFCCh. 3 - Prob. 8GRFCCh. 3 - Prob. 9GRFCCh. 3 - Prob. 10GRFCCh. 3 - Prob. 11GRFCCh. 3 - Prob. 12GRFCCh. 3 - Prob. 1MCQCh. 3 - Prob. 2MCQCh. 3 - Prob. 3MCQCh. 3 - Prob. 4MCQCh. 3 - Prob. 5MCQCh. 3 - Prob. 6MCQCh. 3 - Prob. 7MCQCh. 3 - Prob. 8MCQCh. 3 - Prob. 9MCQCh. 3 - Prob. 10MCQCh. 3 - Prob. 11MCQCh. 3 - Prob. 12MCQCh. 3 - Prob. 13MCQCh. 3 - Prob. 14MCQCh. 3 - Prob. 15MCQCh. 3 - Prob. 16MCQCh. 3 - Prob. 17MCQCh. 3 - Prob. 18MCQCh. 3 - Prob. 19MCQCh. 3 - Prob. 20MCQCh. 3 - Prob. 1SGRCh. 3 - Prob. 2SGRCh. 3 - Prob. 3SGRCh. 3 - Prob. 4SGRCh. 3 - Prob. 5SGRCh. 3 - Prob. 6SGRCh. 3 - Prob. 7SGRCh. 3 - Prob. 8SGRCh. 3 - Prob. 9SGRCh. 3 - Prob. 10SGRCh. 3 - Prob. 11SGRCh. 3 - Prob. 12SGRCh. 3 - Prob. 13SGRCh. 3 - Prob. 14SGRCh. 3 - Prob. 15SGRCh. 3 - Prob. 16SGRCh. 3 - Prob. 17SGRCh. 3 - Prob. 18SGRCh. 3 - Prob. 19SGRCh. 3 - Prob. 20SGRCh. 3 - Prob. 21SGRCh. 3 - Prob. 22SGRCh. 3 - Prob. 23SGRCh. 3 - Prob. 24SGRCh. 3 - Prob. 25SGRCh. 3 - Prob. 26SGRCh. 3 - Prob. 27SGRCh. 3 - Prob. 28SGRCh. 3 - Prob. 29SGRCh. 3 - Prob. 30SGRCh. 3 - Prob. 31SGRCh. 3 - Prob. 32SGRCh. 3 - Prob. 33SGRCh. 3 - Prob. 34SGRCh. 3 - Prob. 35SGRCh. 3 - Prob. 36SGRCh. 3 - Prob. 37SGRCh. 3 - Prob. 38SGRCh. 3 - Prob. 39SGRCh. 3 - Prob. 40SGRCh. 3 - Prob. 41SGRCh. 3 - Prob. 42SGRCh. 3 - Prob. 1PTCh. 3 - Prob. 2PTCh. 3 - Prob. 3PTCh. 3 - Prob. 4PTCh. 3 - Prob. 5PTCh. 3 - Prob. 6PTCh. 3 - Prob. 7PTCh. 3 - Prob. 8PTCh. 3 - Prob. 9PTCh. 3 - Prob. 10PTCh. 3 - Prob. 11PTCh. 3 - Prob. 12PTCh. 3 - Prob. 13PTCh. 3 - Prob. 14PTCh. 3 - Prob. 15PTCh. 3 - Prob. 16PTCh. 3 - Prob. 17PTCh. 3 - Prob. 18PTCh. 3 - Prob. 19PTCh. 3 - Prob. 20PTCh. 3 - Prob. 21PTCh. 3 - Prob. 22PTCh. 3 - Prob. 23PTCh. 3 - Prob. 24PTCh. 3 - Prob. 25PTCh. 3 - Prob. 1STPCh. 3 - Prob. 2STPCh. 3 - Prob. 3STPCh. 3 - Prob. 4STPCh. 3 - Prob. 5STPCh. 3 - Prob. 6STPCh. 3 - Prob. 7STPCh. 3 - Prob. 8STPCh. 3 - Prob. 9STPCh. 3 - Prob. 10STPCh. 3 - Prob. 11STPCh. 3 - Prob. 12STPCh. 3 - Prob. 13STP
Additional Math Textbook Solutions
Find more solutions based on key concepts
TRY IT YOURSELF 1
Find the mean of the points scored by the 51 winning teams listed on page 39.
Elementary Statistics: Picturing the World (7th Edition)
Explain the meaning of the term “statistically significant difference” in statistics terminology.
Intro Stats, Books a la Carte Edition (5th Edition)
CHECK POINT 1 Find a counterexample to show that the statement The product of two two-digit numbers is a three-...
Thinking Mathematically (6th Edition)
Explain why commands and questions are not statements.
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Find the gradient fields of the functions in Exercises 1−4.
3. g(x, y, z) = ez − ln (x2 + y2)
University Calculus: Early Transcendentals (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, geometry and related others by exploring similar questions and additional content below.Similar questions
- Classwork for Geometry 1st X S Savvas Realize * MARYIA DASHUTSINA-Ba → CA savvasrealize.com/dashboard/classes/49ec9fc00d8f48ec9a4b05b30c9ee0ba A > SIS © = =Wauconda Middle S... 31 WMS 8th Grade Tea... SIS Grades and Attenda.... esc GEOMETRY 1ST < Study Guide T6 K 18 L 63° 9 N M Quadrilateral JKLM is a parallelogram. What is the m ZKJN? mZKJN = Review Progress acerarrow_forwardWhy is this proof incorrect? State what statement and/or reason is incorrect and why. Given: Overline OR is congruent to overline OQ, angle N is congruent to angle PProve: Angle 3 is congruent to angle 5 Why is this proof incorrect? Statements Reasons 1. Overline OR is congruent to overline OQ, angle N is congruent to angle P 1. Given 2. Overline ON is congruent to overline OP 2. Converse of the Isosceles Triangle Theorem 3. Triangle ONR is congruent to triangle OPQ 3. SAS 4. Angle 3 is congruent to angle 5 4. CPCTCarrow_forwardGiven: AABE ~ ACDE. Prove: AC bisects BD. Note: quadrilateral properties are not permitted in this proof. Step Statement Reason AABE ACDE Given 2 ZDEC ZAEB Vertical angles are congruent try Type of Statement A E B D Carrow_forward
- 2) Based on the given information and the diagram, a. Which congruence statements can be proven? Select all that apply.Given: Overline OR is congruent to overline OQ, angle N is congruent to angle PProve: angle 3 is congruent to angle 5A. Overline ON is congruent to overline OPB. Angle 1 is congruent to angle 2C. Overline ON is congruent to overline OR and overline OP is congruent to overine OQD. angle 1 is congruent to angle 3 and angle 2 is congruent to angle 5There are more than one correct answerarrow_forwardnt/Ray Skew Lines/ J K # H L 艹 G C D E F Diagrams m Three Points th a Protractor Answer Attempt 3 out of 3 el 1 is congruent to Submit Answer 103 Log Out REE Young the → C # $arrow_forward4:54 PM Thu Jan 16 cdn.assess.prod.mheducation.com Question 3 The angle bisectors of APQR are PZ, QZ, and RZ. They meet at a single point Z. (In other words, Z is the incenter of APQR.) Suppose YZ = 22, QZ = 23, mz WPY 38°, and mzXQZ = 54°. Find the following measures. Note that the figure is not drawn to scale. P W Z X R Y mzXQW WZ = = 0 mz XRZ = 0°arrow_forward
- Ja дх dx dx Q3: Define the linear functional J: H()-R by تاریخ (v) = ½a(v, v) - (v) == Let u be the unique weak solution to a(u,v) = L(v) in H₁(2) and suppose that a(...) is a symmetric bilinear form on H() prove that a Buy v) = 1- u is minimizer. 2- u is unique. 3- The minimizer J(u,) can be rewritten under J(u)=u' Au-ub, algebraic form Where A, b are repictively the stiffence matrix and the load vector Q4: A) Answer only 1-show that thelation to -Auf in N, u = 0 on a satisfies the stability Vulf and show that V(u-u,)||² = ||vu||2 - ||vu||2 lu-ulls Chu||2 2- Prove that Where =1 ||ul|= a(u, u) = Vu. Vu dx + fu. uds B) Consider the bilinear form a(u, v) = (Au, Av) + (Vu, Vv) + (Vu, v) + (u, v) Show that a(u, v) continues and V- elliptic on H(2) (3) (0.0), (3.0)arrow_forwardQ1: A) fill the following: 1- The number of triangular in a triangular region with 5 nodes is quadrilateral with n=5 and m=6 nodés is 2- The complex shape function in 1-D 3- dim(P4(K))=- (7M --- and in the and multiplex shape function in 2-D is 4- The trial space and test space for problem -Auf, u = go on and B) Define the energy norm and prove that the solution u, defined by Galerkin orthogonal satisfies the best approximation. Q2: A) Find the varitional form for the problem 1330 (b(x)) - x²=0, 0arrow_forwardcould you help?arrow_forward(ii)arrow_forwardA convex polygon is said to be regular if all of its sides have the same length and all angles between sides are the same. Let Pr denote the regular convex n-sided polygon. Thus, P3 is the equilateral triangle, P₁ is the square, P is the pentagon etc. Compute a formula for the size of any internal angle of Pn.arrow_forward+ Recall that a map, f: R2 R², is an isometry if |P-Q| = |ƒ(P) — ƒ (Q) for all pairs of points P and Q in R². Thus, f is a distance preserving map. Show that an isometry, f: R² → R² also preserves angles. In other words if two line segments meeting at a point determine an angle a, their image line segments meeting at the image of that point also determine the angle a.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Elementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Elementary Geometry for College StudentsGeometryISBN:9781285195698Author:Daniel C. Alexander, Geralyn M. KoeberleinPublisher:Cengage Learning
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Elementary Geometry for College Students
Geometry
ISBN:9781285195698
Author:Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:Cengage Learning
Basic Reflection Trigonometric Identity; Author: Anil kumar;https://www.youtube.com/watch?v=y-EGUD49fmw;License: Standard YouTube License, CC-BY