University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 33, Problem 33.35E
A beam of white light passes through a uniform thickness of air. If the intensity of the scattered light in the middle of the green part of the visible spectrum is I, find the intensity (in terms of I) of scattered light in the middle of (a) the red part of the spectrum and (b) the violet part of the spectrum. Consult Table 32.1.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
10 mW of light is incident on a piece of GaAs which is 0.2mm thick. The incident light is a mixture of 5mW at λ1=1.553μm and 5mW at λ2=0.828μm. A total of 7mW mixed light exits out of the GaAs. Assume no reflections at the air/GaAs interface and any light generated by recombination won’t exit the GaAs. What are the absorption coefficients, α, for two different wavelengths?
10 mW of light is incident on a piece of GaAs
which is 0.2mm thick. The incident light is a
mixture of 5mW at A1=1.553µm and 5mW at
12=0.828um. A total of 7mW mixed light exits
out of the GaAs. Assume no reflections at the
air/GaAs interface and any light generated by
recombination won't exit the GaAs. What are
the absorption coefficients, a, for two
different wavelengths?
An oil drop of volume 0.2 c.c. is dropped on the surface of a tank of water of area 1 sq. meter. The film spreads uniformly over the surface and white light which is incident normally is observed through a spectrometer. The spectrum is seen to contain one dark band whose centre has wavelength 5.5 x 10 cm in air. Find the refractive index of. Moil.
Chapter 33 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 33.1 - Some crystals are not isotropic: Light travels...Ch. 33.2 - You are standing on the shore of a lake. You spot...Ch. 33.3 - In which of the following situations is there...Ch. 33.5 - You are taking a photograph of a sunlit office...Ch. 33.7 - Sound travels faster in warm air than in cold air....Ch. 33 - Light requires about 8 minutes to travel from the...Ch. 33 - Sunlight or starlight passing through the earths...Ch. 33 - A beam of light goes from one material into...Ch. 33 - Prob. 33.4DQCh. 33 - Prob. 33.5DQ
Ch. 33 - Devise straightforward experiments to measure the...Ch. 33 - Prob. 33.7DQCh. 33 - Prob. 33.8DQCh. 33 - A ray of light in air strikes a glass surface. Is...Ch. 33 - When light is incident on an interface between two...Ch. 33 - A salesperson at a bargain counter claims that a...Ch. 33 - Does it make sense to talk about the polarization...Ch. 33 - How can you determine the direction of the...Ch. 33 - It has been proposed that automobile windshields...Ch. 33 - When a sheet of plastic food wrap is placed...Ch. 33 - If you sit on the beach and look at the ocean...Ch. 33 - When unpolarized light is incident on two crossed...Ch. 33 - For the old rabbit-ear style TV antennas, its...Ch. 33 - In Fig. 33.31, since the light that is scattered...Ch. 33 - You are sunbathing in the late afternoon when the...Ch. 33 - Light scattered from blue sky is strongly...Ch. 33 - Atmospheric haze is due to water droplets or smoke...Ch. 33 - Prob. 33.23DQCh. 33 - Prob. 33.24DQCh. 33 - Prob. 33.25DQCh. 33 - Prob. 33.1ECh. 33 - BIO Light Inside the Eye. The vitreous humor, a...Ch. 33 - A beam of light has a wavelength of 650 nm in...Ch. 33 - Light with a frequency of 5.80 1014 Hz travels in...Ch. 33 - A light beam travels at 1.94 108 m/s in quartz....Ch. 33 - Prob. 33.6ECh. 33 - A parallel beam of light in air makes an angle of...Ch. 33 - Prob. 33.8ECh. 33 - Light traveling in air is incident on the surface...Ch. 33 - (a) A tank containing methanol has walls 2.50 cm...Ch. 33 - Prob. 33.11ECh. 33 - A horizontal, parallel-sided plate of glass having...Ch. 33 - A ray of light is incident on a plane surface...Ch. 33 - Prob. 33.14ECh. 33 - Section 33.3 Total Internal Reflection 33.15Light...Ch. 33 - A flat piece of glass covers the top of a vertical...Ch. 33 - The critical angle for total internal reflection...Ch. 33 - A beam of light is traveling inside a solid glass...Ch. 33 - A ray of light is traveling in a glass cube that...Ch. 33 - Prob. 33.20ECh. 33 - Prob. 33.21ECh. 33 - The indexes of refraction for violet light ( = 400...Ch. 33 - A narrow beam of white light strikes one face of a...Ch. 33 - A beam of light strikes a sheet of glass at an...Ch. 33 - Unpolarized light with intensity I0 is incident on...Ch. 33 - (a) At what angle above the horizontal is the sun...Ch. 33 - A beam of unpolarized light of intensity I0 passes...Ch. 33 - Light of original intensity I0 passes through two...Ch. 33 - A parallel beam of unpolarized light in air is...Ch. 33 - The refractive index of a certain glass is 1.66....Ch. 33 - A beam of polarized light passes through a...Ch. 33 - Three polarizing filters are stacked, with the...Ch. 33 - Unpolarized light of intensity 20.0 W/cm2 is...Ch. 33 - Three Polarizing Filters. Three polarizing filters...Ch. 33 - A beam of white light passes through a uniform...Ch. 33 - A light beam is directed parallel to the axis of a...Ch. 33 - BIO Heart Sonogram. Physicians use high-frequency...Ch. 33 - In a physics lab, light with wavelength 490 nm...Ch. 33 - Prob. 33.39PCh. 33 - Prob. 33.40PCh. 33 - A ray of light traveling in a block of glass (n =...Ch. 33 - A ray of light traveling in air is incident at...Ch. 33 - A glass plate 2.50 mm thick, with an index of...Ch. 33 - After a long day of driving you take a late-night...Ch. 33 - You sight along the rim of a glass with vertical...Ch. 33 - Prob. 33.46PCh. 33 - A thin layer of ice (n = 1.309) floats on the...Ch. 33 - Prob. 33.48PCh. 33 - Prob. 33.49PCh. 33 - Light is incident normally on the short face of a...Ch. 33 - Prob. 33.51PCh. 33 - Prob. 33.52PCh. 33 - Prob. 33.53PCh. 33 - Prob. 33.54PCh. 33 - Prob. 33.55PCh. 33 - A thin beam of white light is directed at a flat...Ch. 33 - DATA In physics lab, you are studying the...Ch. 33 - Prob. 33.58PCh. 33 - DATA A beam of light traveling horizontally is...Ch. 33 - Prob. 33.60CPCh. 33 - Prob. 33.61CPCh. 33 - First, light with a plane of polarization at 45 to...Ch. 33 - Next unpolarized light is reflected off a smooth...Ch. 33 - To vary the angle as well as the intensity of...
Additional Science Textbook Solutions
Find more solutions based on key concepts
A solution contains 35 g of Nacl per 100 g of water at 25C. Is this solution unsaturated, saturated, or supersa...
Introductory Chemistry (6th Edition)
The data were obtained from a use-dilution test comparing four disinfectants against Salmonella choleraesuis. G...
Microbiology: An Introduction
Of the following statements about protected areas that have been established to preserve biodiversity, which on...
Campbell Biology (11th Edition)
1. Which is a function of the skeletal system? (a) support, (b) hematopoietic site, (c) storage, (d) providing ...
Anatomy & Physiology (6th Edition)
For the generic equilibrium HA(aq) ⇌ H + (aq) + A- (aq), which of these statements is true?
The equilibrium con...
Chemistry: The Central Science (14th Edition)
5.6 In Drosophila, the map positions of genes are given in map units numbering from one end of
a chromosome to...
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A metallic sphere A of radius 'R' is completely enclosed by a metallic spherical shell 'B' (made up of same material) of inner radius '2R' and outer radius '4R'. Outer surface of B is highly polished and is perfectly reflecting. Inner surface of 'B' and outer surface of 'A' behave like black bodies. Initially A is emitting radiations of maximum intensity near wavelength 2 and B is emitting radiations of maximum intensity near wavelength 62. After sufficiently long time, both will emit radiations of maximum intensity corresponding 5. 19X E2. Find X. 31 to wavelengtharrow_forwardA beam of white light is incident on a slab of dense flint glass at an angle of incidence of 60°. Flint glass, as with most materials, displays a dispersion where the refractive index is a function of the wavelength of incident light. We can often write this dispersion using the Cauchy relation n(2)=A+B^(-2). For the case of Flint glass, A = 1.728, and B = 0.01342 µm2. What is the difference in angle of the refracted beam between blue light of wavelength 400 nm, and red light of wavelength 700 nm?arrow_forwardRadiation from an X-ray source consists of two components of wavelengths 154.433 pm and 154.051 pm. Calculate the difference in glancing angles (2θ) of the diffraction lines arising from the two components in a diffraction pattern from planes of separation 77.8 pm.arrow_forward
- The refractive index of the standard blue (λ = 486.1 nm) and red (λ = 656.3 nm) hydrogen lines in extra-dense flint are 1.74 and 1.71, respectively. If white light strikes the flint surface in air at an angle of θ=30 degrees, what is the angular separation between the two colors?arrow_forwardhelp me please, this is my review for my exam tomorrowarrow_forward10:54 AM Thu Apr 23 * 79% A cdn.inst-fs-iad-prod.inscloudgate.net (5) If unpolarized light is incident from the left on three polarizes as shown in figure, in which case will some light get through? (a) Case 1 only. (b) Case 2 only. (c) Case 3 only (d) Case 1 and 3 3 (e) All three casesarrow_forward
- A laser beam at a wavelength of 1.11 μm is coupled into an optic fiber, resulting in 138.2 mW of light inside the fiber initially. The fiber is 4.75 km long and has an absorption coefficienct of 1.562 dB/km. What light power, in mW, is at the end of the fiber?arrow_forwardIn the figure, initially unpolarized light is sent into a system of three polarizing sheets whose polarizing directions make angles of 8₁ = 82 83 57° with the direction of the y axis. What percentage of the initial intensity is transmitted by the system? (Hint: Be careful with the angles.)arrow_forwardIn Figure P37.52, suppose the transmission axes of the left and right polarizing disks are perpendicular to each other. Also, let the center disk be rotated on the common axis with an angular speed . Show that if unpolarized light is incident on the left disk with an intensity Imax, the intensity of the beam emerging from the right disk is I=116Imax(1cos4t) This result means that the intensity of the emerging beam is modulated at a rate four times the rate of rotation of the center disk. Suggestion: Use the trigonometric identities cos2=12(1+cos2) and sin2=12(1cos2). Figure P37.52arrow_forward
- How many helium atoms, each with a radius of about 31 pm, must be placed end to end to have a length equal to one wavelength of 470 nm blue light?arrow_forwardAn electric current through hydrogen gas produces several distinct wavelengths of visible light. What are the wavelengths of the hydrogen spectrum, if they form first-order maxima at angles 24.2°, 25.7°, 29.1°, and 41.0° when projected on a diffraction grating having 10,000 lines per centimeter?arrow_forwardA linearly polarized microwave of wavelength 1.50 cm is directed along the positive x axis. The electric field vector has a maximum value of 175 V/m and vibrates in the xy plane. Assuming the magnetic field component of the wave can be written in the form B = Bmax sin (kx t), give values for (a) Bmax, (b) k, and (c) . (d) Determine in which plane the magnetic field vector vibrates. (e) Calculate the average value of the Poynting vector for this wave. (f) If this wave were directed at normal incidence onto a perfectly reflecting sheet, what radiation pressure would it exert? (g) What acceleration would be imparted to a 500-g sheet (perfectly reflecting and at normal incidence) with dimensions of 1.00 m 0.750 m?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY