University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 33, Problem 33.60CP
(a)
To determine
The validation of relations
(b)
To determine
The validation of relation for angle between the ray before it enters the drop at A and after it exits at C is
(c)
To determine
The validation of relation for angle between the ray before it enters the drop at A and after it exits at C
(d)
To determine
The validation of relation
(e)
To determine
The
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
34. Consider a beam of light from the
left entering a prism of apex angle
O as shown in Figure P34.34. Two
angles of incidence, 0, and 0,, are
shown as well as two angles of
refraction, 0, and 0,. Show that
O = 0, + 0g-
2
%D
2
3°
The angle of a prism is A°. One of its refracting surfaces is silvered. Light rays falling at an
angle of incidence 24 on the first surface returns back through the same path after suffering
reflection at the silvered surface. The refractive index u , of the prism is :
a. 2 cos A
1
b.
cos A
c. tan A
d. 2 sin A
A Plane convex lens is put on a glass plate such that the convex surface of the lens touches the plane surface of the plate. An oil drop is put in between. The radius of curvature of the convex surface of the lens is 200 cm and the refractive index of both the lens and the plate is 1.52. The refractive index of oil is 1.58 and the wavelength of light used is 5000 A.a. Find the radius of the 5th bright ring for normal incidence.b. Find the number of dark rings that can be observed in Newton's rings experiment if the radius of the lens is 2 cm.
Chapter 33 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 33.1 - Some crystals are not isotropic: Light travels...Ch. 33.2 - You are standing on the shore of a lake. You spot...Ch. 33.3 - In which of the following situations is there...Ch. 33.5 - You are taking a photograph of a sunlit office...Ch. 33.7 - Sound travels faster in warm air than in cold air....Ch. 33 - Light requires about 8 minutes to travel from the...Ch. 33 - Sunlight or starlight passing through the earths...Ch. 33 - A beam of light goes from one material into...Ch. 33 - Prob. 33.4DQCh. 33 - Prob. 33.5DQ
Ch. 33 - Devise straightforward experiments to measure the...Ch. 33 - Prob. 33.7DQCh. 33 - Prob. 33.8DQCh. 33 - A ray of light in air strikes a glass surface. Is...Ch. 33 - When light is incident on an interface between two...Ch. 33 - A salesperson at a bargain counter claims that a...Ch. 33 - Does it make sense to talk about the polarization...Ch. 33 - How can you determine the direction of the...Ch. 33 - It has been proposed that automobile windshields...Ch. 33 - When a sheet of plastic food wrap is placed...Ch. 33 - If you sit on the beach and look at the ocean...Ch. 33 - When unpolarized light is incident on two crossed...Ch. 33 - For the old rabbit-ear style TV antennas, its...Ch. 33 - In Fig. 33.31, since the light that is scattered...Ch. 33 - You are sunbathing in the late afternoon when the...Ch. 33 - Light scattered from blue sky is strongly...Ch. 33 - Atmospheric haze is due to water droplets or smoke...Ch. 33 - Prob. 33.23DQCh. 33 - Prob. 33.24DQCh. 33 - Prob. 33.25DQCh. 33 - Prob. 33.1ECh. 33 - BIO Light Inside the Eye. The vitreous humor, a...Ch. 33 - A beam of light has a wavelength of 650 nm in...Ch. 33 - Light with a frequency of 5.80 1014 Hz travels in...Ch. 33 - A light beam travels at 1.94 108 m/s in quartz....Ch. 33 - Prob. 33.6ECh. 33 - A parallel beam of light in air makes an angle of...Ch. 33 - Prob. 33.8ECh. 33 - Light traveling in air is incident on the surface...Ch. 33 - (a) A tank containing methanol has walls 2.50 cm...Ch. 33 - Prob. 33.11ECh. 33 - A horizontal, parallel-sided plate of glass having...Ch. 33 - A ray of light is incident on a plane surface...Ch. 33 - Prob. 33.14ECh. 33 - Section 33.3 Total Internal Reflection 33.15Light...Ch. 33 - A flat piece of glass covers the top of a vertical...Ch. 33 - The critical angle for total internal reflection...Ch. 33 - A beam of light is traveling inside a solid glass...Ch. 33 - A ray of light is traveling in a glass cube that...Ch. 33 - Prob. 33.20ECh. 33 - Prob. 33.21ECh. 33 - The indexes of refraction for violet light ( = 400...Ch. 33 - A narrow beam of white light strikes one face of a...Ch. 33 - A beam of light strikes a sheet of glass at an...Ch. 33 - Unpolarized light with intensity I0 is incident on...Ch. 33 - (a) At what angle above the horizontal is the sun...Ch. 33 - A beam of unpolarized light of intensity I0 passes...Ch. 33 - Light of original intensity I0 passes through two...Ch. 33 - A parallel beam of unpolarized light in air is...Ch. 33 - The refractive index of a certain glass is 1.66....Ch. 33 - A beam of polarized light passes through a...Ch. 33 - Three polarizing filters are stacked, with the...Ch. 33 - Unpolarized light of intensity 20.0 W/cm2 is...Ch. 33 - Three Polarizing Filters. Three polarizing filters...Ch. 33 - A beam of white light passes through a uniform...Ch. 33 - A light beam is directed parallel to the axis of a...Ch. 33 - BIO Heart Sonogram. Physicians use high-frequency...Ch. 33 - In a physics lab, light with wavelength 490 nm...Ch. 33 - Prob. 33.39PCh. 33 - Prob. 33.40PCh. 33 - A ray of light traveling in a block of glass (n =...Ch. 33 - A ray of light traveling in air is incident at...Ch. 33 - A glass plate 2.50 mm thick, with an index of...Ch. 33 - After a long day of driving you take a late-night...Ch. 33 - You sight along the rim of a glass with vertical...Ch. 33 - Prob. 33.46PCh. 33 - A thin layer of ice (n = 1.309) floats on the...Ch. 33 - Prob. 33.48PCh. 33 - Prob. 33.49PCh. 33 - Light is incident normally on the short face of a...Ch. 33 - Prob. 33.51PCh. 33 - Prob. 33.52PCh. 33 - Prob. 33.53PCh. 33 - Prob. 33.54PCh. 33 - Prob. 33.55PCh. 33 - A thin beam of white light is directed at a flat...Ch. 33 - DATA In physics lab, you are studying the...Ch. 33 - Prob. 33.58PCh. 33 - DATA A beam of light traveling horizontally is...Ch. 33 - Prob. 33.60CPCh. 33 - Prob. 33.61CPCh. 33 - First, light with a plane of polarization at 45 to...Ch. 33 - Next unpolarized light is reflected off a smooth...Ch. 33 - To vary the angle as well as the intensity of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Light is incident on a prism as shown in Figure P38.31. The prism, an equilateral triangle, is made of plastic with an index of refraction of 1.46 for red light and 1.49 for blue light. Assume the apex angle of the prism is 60.00. a. Sketch the approximate paths of the rays for red and blue light as they travel through and then exit the prism. b. Determine the measure of dispersion, the angle between the red and blue rays that exit the prism. Figure P38.31arrow_forwardA green laser beam travels through the an L-shaped block of transparent blue plastic with an angle 00 = 38. above the x axis. The index of refraction of the blue plastic is nb = 1.90. The beam passes into a rectangular block of transparent yellow plastic, and the refracted ray then has an angle of Oy = 43., as shown in the figure below. %3D a. What is the speed of the laser beam as it travels through the blue plastic? b. What is the index of refraction ny of the yellow plastic? c. When the refracted laser beam reaches the other edge of the yellow plastic, it is refracted again as it re-enters the blue plastic. What is the final direction Of of the beam above the x axis?arrow_forwardThe critical angle for total internal reflection at a turpentine-air interface is 42.8°. A ray traveling in the liquid has an angle of incidence of 32.0° at the interface. What angle does the refracted ray in air make with the normal? O51.3° O 14.7° O 53.0° O 23.8° here to search Larrow_forward
- M7arrow_forwardA light ray in the core (n = 1.40) of a cylindrical optical fiber is incident on the cladding. A ray is transmitted through the cladding (n = 1.20) and into the air. The emerging ray makes an angle 02 = 1.00° with the outside surface of the cladding. What angle 0, did the ray in the core make with the axis? Air Cladding Axis Corearrow_forwardThe bottom of a glass bottom boat allows tourists to see the coral reefs in Australia. The indices of refraction are as follows: air(n=1), glass(n=1.55), water(n=1.330).If a light ray coming from above hits the glass at an angle of 60.0deg to the normal, what is the refracted angle (deg) inside the water?arrow_forward
- White light enters flint glass from air (n₁ = 1). The angle of incidence is 8, = 63 degrees. Due to dispersion in the glass, the index of refraction for red light is 1.662, while the index for violet light is 1.698. Due to this difference, the violet and red parts of white light are refracted by different amounts. What is the difference in refraction angle (AO) between violet and red fin this situation? A0 = degrees n₁ n₂ refracted raysarrow_forwardWhite light is incident from air onto a triangular prism at a 45.0° angle with respect to the normal. It refracts into the prism then back into air as it exits the prism. From there, it enters a thick glass plate. The prism has an index of refraction of 1.49 for red light and 1.52 for violet light. The glass has an index of refraction of 1.61 for red light and 1.64 for violet light. What is the angular separation (dispersion angle) of the two noted colors while in the glass slab? Take nair = 1.00 for all wavelengths. white light 45 air prism 45 90 air 60 degrees violet light Glass red light angular separationarrow_forwardThe figure below show a slab made of three different materialS X, Y, and Z having refractive indices nx, ny, and nz respectively. The slab is immersed in water(n=1.333) and the light is incident upon its bottom surface. If a= 70° and θ=50°, what is tye reflected index of material Zarrow_forward
- A laser beam travels from air (n=1) into glass (n=1.5) and then into gelatin. The incident ray makes a 58.0o angle with the normal in the air before it enters the glass and a 36.4o angle with the normal after it enters the gelatin. In a neat and organized fashion, write out a solution which includes the following: A sketch of the physical situation with all given physical quantities clearly labeled. Draw a ray diagram showing all reflected and refracted rays in this situation and all angles clearly labeled. Determine (a) the angle the refracted ray makes with the normal in the glass and (b) the index of refraction of the gelatin. Clearly show all steps, starting from generalized equations. Explain your mathematical work in words. Your explanation should cover both what you did and the thought process behind why you did that. Evaluate your answer to determine whether it is reasonable or not. Consider all aspects of your answer (the numerical value, sign, and units) in your evaluation.…arrow_forwardA laser beam travels from air (n=1) into glass (n=1.5) and then into gelatin. The incident ray makes a 58.0o angle with the normal in the air before it enters the glass and a 36.4o angle with the normal after it enters the gelatin. In a neat and organized fashion, write out a solution which includes the following: A sketch of the physical situation with all given physical quantities clearly labeled. Draw a ray diagram showing all reflected and refracted rays in this situation and all angles clearly labeled. Determine (a) the angle the refracted ray makes with the normal in the glass and (b) the index of refraction of the gelatin. Clearly show all steps, starting from generalized equations. Explain your mathematical work in words. Your explanation should cover both what you did and the thought process behind why you did that. Evaluate your answer to determine whether it is reasonable or not. Consider all aspects of your answer (the numerical value, sign, and units) in your evaluation.…arrow_forwardA ray of sunlight traveling through water (n=1.32 - 1.34 across the visible spectrum) has an incident angle of 80° when it encounters a transparent aquarium wall with index of refraction n=1.2. There is air with index n=1 on the other side of the wall and the wall surfaces are parallel. Which statement below is true? Select one: a. Light emerges on the other side of the wall traveling parallel to the incident ray. b. Light emerges on the other side of the wall but different colors now travel in different directions. c. Light emerges on the other side of the wall and is now completely polarized. d. The light is completely reflected at the first interface. e. The light enters into the transparent wall bot is completely reflected at the second interface.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning