University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 33, Problem 33.55P
To determine
The angle that the beam makes with the normal inside the water.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please Asap
When the light illustrated in Figure P35.21 passes through the glass block, it is shifted laterally by the distance d. Find the time
interval required for the light to pass through the glass block, where t = 1.50 cm, n = 1.50, and = 35.0⁰
ps
Figure P35.21
A light ray traveling in air is incident on one face of a right-angle prism with index of refraction n = 1.49, as shown in Figure P22.54, and the ray follows the path shown in the figure. Assuming that θ = 58.0° and the base of the prism is mirrored, determine the angle made by the outgoing ray with the normal to the right face of the prism.?degrees
Chapter 33 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 33.1 - Some crystals are not isotropic: Light travels...Ch. 33.2 - You are standing on the shore of a lake. You spot...Ch. 33.3 - In which of the following situations is there...Ch. 33.5 - You are taking a photograph of a sunlit office...Ch. 33.7 - Sound travels faster in warm air than in cold air....Ch. 33 - Light requires about 8 minutes to travel from the...Ch. 33 - Sunlight or starlight passing through the earths...Ch. 33 - A beam of light goes from one material into...Ch. 33 - Prob. 33.4DQCh. 33 - Prob. 33.5DQ
Ch. 33 - Devise straightforward experiments to measure the...Ch. 33 - Prob. 33.7DQCh. 33 - Prob. 33.8DQCh. 33 - A ray of light in air strikes a glass surface. Is...Ch. 33 - When light is incident on an interface between two...Ch. 33 - A salesperson at a bargain counter claims that a...Ch. 33 - Does it make sense to talk about the polarization...Ch. 33 - How can you determine the direction of the...Ch. 33 - It has been proposed that automobile windshields...Ch. 33 - When a sheet of plastic food wrap is placed...Ch. 33 - If you sit on the beach and look at the ocean...Ch. 33 - When unpolarized light is incident on two crossed...Ch. 33 - For the old rabbit-ear style TV antennas, its...Ch. 33 - In Fig. 33.31, since the light that is scattered...Ch. 33 - You are sunbathing in the late afternoon when the...Ch. 33 - Light scattered from blue sky is strongly...Ch. 33 - Atmospheric haze is due to water droplets or smoke...Ch. 33 - Prob. 33.23DQCh. 33 - Prob. 33.24DQCh. 33 - Prob. 33.25DQCh. 33 - Prob. 33.1ECh. 33 - BIO Light Inside the Eye. The vitreous humor, a...Ch. 33 - A beam of light has a wavelength of 650 nm in...Ch. 33 - Light with a frequency of 5.80 1014 Hz travels in...Ch. 33 - A light beam travels at 1.94 108 m/s in quartz....Ch. 33 - Prob. 33.6ECh. 33 - A parallel beam of light in air makes an angle of...Ch. 33 - Prob. 33.8ECh. 33 - Light traveling in air is incident on the surface...Ch. 33 - (a) A tank containing methanol has walls 2.50 cm...Ch. 33 - Prob. 33.11ECh. 33 - A horizontal, parallel-sided plate of glass having...Ch. 33 - A ray of light is incident on a plane surface...Ch. 33 - Prob. 33.14ECh. 33 - Section 33.3 Total Internal Reflection 33.15Light...Ch. 33 - A flat piece of glass covers the top of a vertical...Ch. 33 - The critical angle for total internal reflection...Ch. 33 - A beam of light is traveling inside a solid glass...Ch. 33 - A ray of light is traveling in a glass cube that...Ch. 33 - Prob. 33.20ECh. 33 - Prob. 33.21ECh. 33 - The indexes of refraction for violet light ( = 400...Ch. 33 - A narrow beam of white light strikes one face of a...Ch. 33 - A beam of light strikes a sheet of glass at an...Ch. 33 - Unpolarized light with intensity I0 is incident on...Ch. 33 - (a) At what angle above the horizontal is the sun...Ch. 33 - A beam of unpolarized light of intensity I0 passes...Ch. 33 - Light of original intensity I0 passes through two...Ch. 33 - A parallel beam of unpolarized light in air is...Ch. 33 - The refractive index of a certain glass is 1.66....Ch. 33 - A beam of polarized light passes through a...Ch. 33 - Three polarizing filters are stacked, with the...Ch. 33 - Unpolarized light of intensity 20.0 W/cm2 is...Ch. 33 - Three Polarizing Filters. Three polarizing filters...Ch. 33 - A beam of white light passes through a uniform...Ch. 33 - A light beam is directed parallel to the axis of a...Ch. 33 - BIO Heart Sonogram. Physicians use high-frequency...Ch. 33 - In a physics lab, light with wavelength 490 nm...Ch. 33 - Prob. 33.39PCh. 33 - Prob. 33.40PCh. 33 - A ray of light traveling in a block of glass (n =...Ch. 33 - A ray of light traveling in air is incident at...Ch. 33 - A glass plate 2.50 mm thick, with an index of...Ch. 33 - After a long day of driving you take a late-night...Ch. 33 - You sight along the rim of a glass with vertical...Ch. 33 - Prob. 33.46PCh. 33 - A thin layer of ice (n = 1.309) floats on the...Ch. 33 - Prob. 33.48PCh. 33 - Prob. 33.49PCh. 33 - Light is incident normally on the short face of a...Ch. 33 - Prob. 33.51PCh. 33 - Prob. 33.52PCh. 33 - Prob. 33.53PCh. 33 - Prob. 33.54PCh. 33 - Prob. 33.55PCh. 33 - A thin beam of white light is directed at a flat...Ch. 33 - DATA In physics lab, you are studying the...Ch. 33 - Prob. 33.58PCh. 33 - DATA A beam of light traveling horizontally is...Ch. 33 - Prob. 33.60CPCh. 33 - Prob. 33.61CPCh. 33 - First, light with a plane of polarization at 45 to...Ch. 33 - Next unpolarized light is reflected off a smooth...Ch. 33 - To vary the angle as well as the intensity of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- . What is the speed of light in water? In glycerine? The refractive index of light in water is 1.333 and in glycerine is 1.473. Speed to light in vacuum is 3×10 m/s. V watei V glycerine m S m Sarrow_forwarda) A ray of light is traveling in a glass cube that is totally immersed in water. You find that if the ray is incident on the glass-water interface at an angle to the normal greater than 48.7o, no light is refracted into the water. What is the refractive index of glass? The refractive index of water is 1.33.arrow_forwardLight can travel from air into water. Some possible paths for the light ray in the water are shown in Figure OQ35.7. Which path will the light most likely follow? (a) A (b) B (c) C (d) D (e) Earrow_forward
- A light ray is incident at 45° on a glass block immersed inside a liquid of refractive index nį = 1.33 as shown in the figure below. In this configuration, the refractive ray skims the bottom surface. Determine the refractive index of the glass, ng. ng 45° 1.66 1.55 O 1.69 1.49 1.63 1.58arrow_forwardA ray of light strikes a flat block of glass at an incidence angle of ?1 = 38.6°. The glass is 2.00 cm thick and has an index of refraction that equals ng = 1.52. a.) The distance d separates the twice-bent ray from the path it would have taken without the glass in the way. What is this distance (in cm)? b.) At what speed (in m/s) does the light travel within the glass? c.) How many nanoseconds does the light take to pass through the glass along the angled path shown here?arrow_forwardA light ray is incident at 45° on a glass block immersed inside a liquid of refractive index nL = 1.33 as shown in the figure below. In this configuration, the refractive ray skims the bottom surface. Determine the refractive index of the glass, ng. ng 45° ng = 1.63 ng = 1.7 ng = 1.48 ng = 1.51 O ng = 1.57arrow_forward
- Sapphire has an index of refraction of 1.80. What is its critical angle of incidence when in air? 1.16° 55.6° 33.7° 65.2° 87.4° Light travels from leaded glass into water with an angle of refraction of 35.4 °. The angle of incidence is 26.9o. If the refractive index of water is 1.33, what is the refractive index of the leaded glass? 1.04 1.50 1.70 1.90 1.33 Correct answers are noted can you help expalin why?arrow_forwardA ray of sunlight traveling through water (n=1.32 - 1.34 across the visible spectrum) has an incident angle of 80° when it encounters a transparent aquarium wall with index of refraction n=1.2. There is air with index n=1 on the other side of the wall and the wall surfaces are parallel. Which statement below is true? Select one: a. Light emerges on the other side of the wall traveling parallel to the incident ray. b. Light emerges on the other side of the wall but different colors now travel in different directions. c. Light emerges on the other side of the wall and is now completely polarized. d. The light is completely reflected at the first interface. e. The light enters into the transparent wall bot is completely reflected at the second interface.arrow_forwardThree polarizing plates whose planes are parallel are centered on a common axis. The directions of the transmission axes relative to the common vertical direction are shown in Figure P24.59. A linearly polarized beam of light with plane of polarization parallel to the vertical reference direction is incident from the left onto the first disk with intensity I1 = 10.0 units (arbitrary). Calculate the transmitted intensity IF when 01 = 20.0°, 02 = 40.0°, and 03 = 60.0°. Hint: Make repeated use of Malus’s law.arrow_forward
- A scientist is carrying out an experiment to determine the index of refraction for a partially reflective material. To do this, he aims a narrow beam of light at a sample of this material, which has a smooth surface. He then varies the angle of incidence. (The incident beam is traveling through air.) The light that gets reflected by the sample is completely polarized when the angle of incidence is 56.0°. (a) What index of refraction describes the material? n = (b) If some of the incident light (at ?i = 56.0°) enters the material and travels below the surface, what is the angle of refraction (in degrees)? in degrees °arrow_forwardA ray of light originates inside the glass filled with water, as shown in the figure. It travels through water, in incident on the glass side, and emerges into the air. Ignore any partial reflections. What is the values of angles Q? Water n=1.33 370 Air Glass n = 1.0 n= 1.5 32.25° 67.16° 53.17° 35.89°arrow_forwardAn engineer is carrying out an experiment to determine the index of refraction for a partially reflective material. To do this, she aims a narrow beam of light at a sample of this material, which has a smooth surface. She then varies the angle of incidence. (The incident beam is traveling through air.) The light that gets reflected by the sample is completely polarized when the angle of incidence is 59.5°. (a)What index of refraction describes the material? n = (b)If some of the incident light (at ?i = 59.5°) enters the material and travels below the surface, what is the angle of refraction (in degrees)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning