University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 33, Problem 33.32E
Three polarizing filters are stacked, with the polarizing axis of the second and third filters at 23.0 and 62.0 , respectively, to that of the first. If unpolarized light is incident on the stack, the light has intensity 55.0 W/cm2 after it passes through the stack. If the incident intensity is kept constant but the second polarizer is removed, what is the intensity of the light alter it has passed through the stack?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Three polarizing filters are stacked, with the polarizing axis of the second and third filters at 23.0° and 62.0°, respectively, clockwise to that of the first. If unpolarized light is incident on the stack, the light has intensity 55.0 W/cm2 after it passes through the stack. If the incident intensity is kept constant but the second polarizer is removed, what is the intensity of the light after it has passed through the stack?
Three polarizing filters are stacked, with the polarizing axis of the second and third at 24.0◦ and 61.0◦, respectively, to that of the first. If unpolarized light is incident on the stack, the light has intensity 65.0 W/cm2 after it passes through the stack. If the incident intensity is kept constant, what is the intensity of the light after it has passed through the stack if the second polarizer is removed?
A beam of initially unpolarized light of intensity 575 W/m^2 passes through a series of polarizing filters, each one s axis aligned at a 17.3-degree angle with respect to the previous filter s axis. The beam of light emerging from the final filter in the series has an intensity of 103.8 W/m^2. How many polarizing filters did the beam pass through?
Chapter 33 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 33.1 - Some crystals are not isotropic: Light travels...Ch. 33.2 - You are standing on the shore of a lake. You spot...Ch. 33.3 - In which of the following situations is there...Ch. 33.5 - You are taking a photograph of a sunlit office...Ch. 33.7 - Sound travels faster in warm air than in cold air....Ch. 33 - Light requires about 8 minutes to travel from the...Ch. 33 - Sunlight or starlight passing through the earths...Ch. 33 - A beam of light goes from one material into...Ch. 33 - Prob. 33.4DQCh. 33 - Prob. 33.5DQ
Ch. 33 - Devise straightforward experiments to measure the...Ch. 33 - Prob. 33.7DQCh. 33 - Prob. 33.8DQCh. 33 - A ray of light in air strikes a glass surface. Is...Ch. 33 - When light is incident on an interface between two...Ch. 33 - A salesperson at a bargain counter claims that a...Ch. 33 - Does it make sense to talk about the polarization...Ch. 33 - How can you determine the direction of the...Ch. 33 - It has been proposed that automobile windshields...Ch. 33 - When a sheet of plastic food wrap is placed...Ch. 33 - If you sit on the beach and look at the ocean...Ch. 33 - When unpolarized light is incident on two crossed...Ch. 33 - For the old rabbit-ear style TV antennas, its...Ch. 33 - In Fig. 33.31, since the light that is scattered...Ch. 33 - You are sunbathing in the late afternoon when the...Ch. 33 - Light scattered from blue sky is strongly...Ch. 33 - Atmospheric haze is due to water droplets or smoke...Ch. 33 - Prob. 33.23DQCh. 33 - Prob. 33.24DQCh. 33 - Prob. 33.25DQCh. 33 - Prob. 33.1ECh. 33 - BIO Light Inside the Eye. The vitreous humor, a...Ch. 33 - A beam of light has a wavelength of 650 nm in...Ch. 33 - Light with a frequency of 5.80 1014 Hz travels in...Ch. 33 - A light beam travels at 1.94 108 m/s in quartz....Ch. 33 - Prob. 33.6ECh. 33 - A parallel beam of light in air makes an angle of...Ch. 33 - Prob. 33.8ECh. 33 - Light traveling in air is incident on the surface...Ch. 33 - (a) A tank containing methanol has walls 2.50 cm...Ch. 33 - Prob. 33.11ECh. 33 - A horizontal, parallel-sided plate of glass having...Ch. 33 - A ray of light is incident on a plane surface...Ch. 33 - Prob. 33.14ECh. 33 - Section 33.3 Total Internal Reflection 33.15Light...Ch. 33 - A flat piece of glass covers the top of a vertical...Ch. 33 - The critical angle for total internal reflection...Ch. 33 - A beam of light is traveling inside a solid glass...Ch. 33 - A ray of light is traveling in a glass cube that...Ch. 33 - Prob. 33.20ECh. 33 - Prob. 33.21ECh. 33 - The indexes of refraction for violet light ( = 400...Ch. 33 - A narrow beam of white light strikes one face of a...Ch. 33 - A beam of light strikes a sheet of glass at an...Ch. 33 - Unpolarized light with intensity I0 is incident on...Ch. 33 - (a) At what angle above the horizontal is the sun...Ch. 33 - A beam of unpolarized light of intensity I0 passes...Ch. 33 - Light of original intensity I0 passes through two...Ch. 33 - A parallel beam of unpolarized light in air is...Ch. 33 - The refractive index of a certain glass is 1.66....Ch. 33 - A beam of polarized light passes through a...Ch. 33 - Three polarizing filters are stacked, with the...Ch. 33 - Unpolarized light of intensity 20.0 W/cm2 is...Ch. 33 - Three Polarizing Filters. Three polarizing filters...Ch. 33 - A beam of white light passes through a uniform...Ch. 33 - A light beam is directed parallel to the axis of a...Ch. 33 - BIO Heart Sonogram. Physicians use high-frequency...Ch. 33 - In a physics lab, light with wavelength 490 nm...Ch. 33 - Prob. 33.39PCh. 33 - Prob. 33.40PCh. 33 - A ray of light traveling in a block of glass (n =...Ch. 33 - A ray of light traveling in air is incident at...Ch. 33 - A glass plate 2.50 mm thick, with an index of...Ch. 33 - After a long day of driving you take a late-night...Ch. 33 - You sight along the rim of a glass with vertical...Ch. 33 - Prob. 33.46PCh. 33 - A thin layer of ice (n = 1.309) floats on the...Ch. 33 - Prob. 33.48PCh. 33 - Prob. 33.49PCh. 33 - Light is incident normally on the short face of a...Ch. 33 - Prob. 33.51PCh. 33 - Prob. 33.52PCh. 33 - Prob. 33.53PCh. 33 - Prob. 33.54PCh. 33 - Prob. 33.55PCh. 33 - A thin beam of white light is directed at a flat...Ch. 33 - DATA In physics lab, you are studying the...Ch. 33 - Prob. 33.58PCh. 33 - DATA A beam of light traveling horizontally is...Ch. 33 - Prob. 33.60CPCh. 33 - Prob. 33.61CPCh. 33 - First, light with a plane of polarization at 45 to...Ch. 33 - Next unpolarized light is reflected off a smooth...Ch. 33 - To vary the angle as well as the intensity of...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The human body contains about 1014 cells, and the diameter of a typical cell is about 10 m Like all ordinary ma...
Essential University Physics (3rd Edition)
In the space at right sketch the position vectors for point C at the beginning and at the end of a small time i...
Tutorials in Introductory Physics
bio Standard electrocardiography measures lime-dependent potential differences between multiple points on the b...
Essential University Physics: Volume 2 (3rd Edition)
55. Is cleavage the same thing as crystal form? Why or why not?
Conceptual Physical Science (6th Edition)
28.40 Figure E28.40 shows, in cross section, several conductors that carry currents through the plane of the fi...
University Physics (14th Edition)
Choose the best answer to each of the following Explain your reasoning. In the Drake equation, what would flife...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An unpolarized beam of light is incident on a stack of ideal polarizing filters. The axis of the first filter is perpendicular to the axis of the last filter in the stack. Find the fraction by which the transmitted beams intensity is reduced in the three following cases. (a) Three filters are in the stack, each with its transmission axis at 45.0 relative to the preceding filter. (b) Four filters are in the stack, each with its transmission axis at 30.0 relative to the preceding filter. (c) Seven filters are in the stack, each with its transmission axis at 15.0 relative to the preceding filter. (d) Comment on comparing the answers to parts (a), (b), and (c).arrow_forwardIn Figure P37.52, suppose the transmission axes of the left and right polarizing disks are perpendicular to each other. Also, let the center disk be rotated on the common axis with an angular speed . Show that if unpolarized light is incident on the left disk with an intensity Imax, the intensity of the beam emerging from the right disk is I=116Imax(1cos4t) This result means that the intensity of the emerging beam is modulated at a rate four times the rate of rotation of the center disk. Suggestion: Use the trigonometric identities cos2=12(1+cos2) and sin2=12(1cos2). Figure P37.52arrow_forwardIf a polarizing filter reduces the intensity of polarized light to 50.0% of its original value, by how much are the electric and magnetic fields reduced?arrow_forward
- Figure P24.13 shows a plane electromagnetic sinusoidal wave propagating in the x direction. Suppose the wavelength is 50.0 m and the electric field vibrates in the xy plane with an amplitude of 22.0 V/m. Calculate (a) the frequency of the wave and (b) the magnetic field B when the electric field has its maximum value in the negative y direction. (c) Write an expression for B with the correct unit vector, with numerical values for Bmax, k, and , and with its magnitude in the form B=Bmaxcos(kxt) Figure P24.13 Problems 13 and 64.arrow_forwardA linearly polarized microwave of wavelength 1.50 cm is directed along the positive x axis. The electric field vector has a maximum value of 175 V/m and vibrates in the xy plane. Assuming the magnetic field component of the wave can be written in the form B = Bmax sin (kx t), give values for (a) Bmax, (b) k, and (c) . (d) Determine in which plane the magnetic field vector vibrates. (e) Calculate the average value of the Poynting vector for this wave. (f) If this wave were directed at normal incidence onto a perfectly reflecting sheet, what radiation pressure would it exert? (g) What acceleration would be imparted to a 500-g sheet (perfectly reflecting and at normal incidence) with dimensions of 1.00 m 0.750 m?arrow_forwardThree polarizing sheets are placed together such that the transmission axis of the second sheet is oriented at 25.0° to the axis of the first, whereas the transmission axis of the third sheet is oriented at 40.0° (in the same sense) to the axis of the first. What fraction of an intensity of an incident unpolarized beam is transmitted by the combination?arrow_forward
- A linearly polarized microwave of wavelength 1.50 cm is directed along the positive x axis. The electric field vector has a maximum value of 175 V/m and vibrates in the xy plane. Assuming the magnetic field component of the wave can be written in the form B = Bmax sin (kx t), give values for (a) Bmax, (b) k, and (c) .(d) Determine in which plane the magnetic field vector vibrates. (e) Calculate the average value of the Poynting vector for this wave. (f) If this wave were directed at normal incidence onto a perfectly reflecting sheet, what radiation pressure would it exert? (g) What acceleration would be imparted to a 500-g sheet (perfectly reflecting and at normal incidence) with dimensions of 1.00 m 0.750 m?arrow_forwardLight that is nonpolarized has an intensity of 6.0 W/m2. Rays of this light are incident on two polarizing filters. The transmission axis of the first polarizer forms 90O angle with the horizontal, while the analyzer forms 45O with the transmission axis of the polarizer. What is the intensity of light emerging from the analyzer?arrow_forwardThree ideal polarizing filters are stacked, with the polarizing axis of the second and third filters at 30.0 ∘∘ and 57.0 ∘∘, respectively, to that of the first. If unpolarized light is incident on the stack, the light has intensity 70.0 W/cm2W/cm2 after it passes through the stack. A)If the incident intensity is kept constant, what is the intensity of the light after it has passed through the stack if the second polarizer is removed? Express your answer in watts per meter squared.arrow_forward
- Unpolarized light passes through three polarizing filters. The first filter has it transmission axis parallel to the z direction, the second has its transmission axis at an angle of 30 degrees from the z direction, the third has its transmission axis at an angle of 60 degrees from the z direction. If the light that emerges from the third filter has an intensity of 36.0 W/m2, what is the original intensity of the light? (Assume both angles are measured in the same direction from the +z axis). Use cos(30)=√3/2.arrow_forwardUnpolarized light of intensity I0 = 1300 W/m2 is incident upon two polarizers. After passing through both polarizers the intensity is I2 = 140 W/m2. Part (a) What is the intensity of the light after it passes through the first polarizer in W/m2? Part (b) Write an equation for the angle between the polarizers in terms of the initial (I0) and final (I2) intensities. Part (c) Find the angle between the polarizers in degrees.arrow_forwardUnpolarized light passes through three polarizing filters. The first filter has its transmission axis parallel to the z direction, the second has its transmission axis at an angle of 30.0° from the z direction, and the third has its transmission axis at an angle of 60.0° from the z direction. If the light that emerges from the third filter has an intensity of 587.0 W/m², what is the original intensity of the light? (Assume both angles are measured in the same direction from the +z axis.) W/m2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY