INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
14th Edition
ISBN: 9780133918922
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3.3, Problem 12P
Determine the force in each of the cables AB and AC as a function of θ. If the maximum tension allowed in each cable is 5 kN, determine the shortest length of cobles AB end AC that can be used for the lift. The center of gravity of the container is located at G.
Prob. 3–12
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule09:47
Students have asked these similar questions
Determine the resultant of the three cable tensions that act on the horizontal boom if T1 = 900 lb, T2 = 500 lb, and T3 = 300 lb. (COMPLETE FBD AND SOLUTIONS)
A nuclear-reactor vessel has a weight of 500(103) lb.Determine the horizontal compressive force that thespreader bar AB exerts on point A and the force that eachcable segment CA and AD exert on this point while thevessel is hoisted upward at constant velocity.
the man is holding up the 35-kg ladder ABC by pushing perpendicular to ladder. The total length of the ladder is AC=6m. If maximum force that the man can exert is 400N at B which is 2m from A. determine the smallest angle, theta, at which the man can support the ladder
Chapter 3 Solutions
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
Ch. 3.3 - In each case, draw a free-body diagram of the ring...Ch. 3.3 - Do not solve.Ch. 3.3 - Determine the force in each supporting cable.Ch. 3.3 - Determine the shortest cable ABC that can be used...Ch. 3.3 - Neglect the size of the pulley.Ch. 3.3 - Determine the unstretched length of the spring.Ch. 3.3 - If the mass of cylinder C is 40 kg, determine the...Ch. 3.3 - Also, find the angle .Ch. 3.3 - Determine the magnitudes of F1 and F2 for...Ch. 3.3 - Determine the magnitude of F1 and its angle for...
Ch. 3.3 - Determine the magnitude and direction of F so...Ch. 3.3 - The bottom one is subjected to a 125-N force at...Ch. 3.3 - If the forces are concurrent at point O, determine...Ch. 3.3 - Determine the tension force in member C and its...Ch. 3.3 - If the tension in AB is 60 lb, determine the...Ch. 3.3 - The cords ABC and BD can each support a maximum...Ch. 3.3 - Determine the maximum force F that can be...Ch. 3.3 - Determine the angle for equilibrium and the force...Ch. 3.3 - Prob. 11PCh. 3.3 - Determine the force in each of the cables AB and...Ch. 3.3 - Prob. 13PCh. 3.3 - The springs are shown in the equilibrium position.Ch. 3.3 - If the block is held in the equilibrium position...Ch. 3.3 - Note that s = 0 when the cylinders are removed.Ch. 3.3 - Prob. 17PCh. 3.3 - determine the stiffness of the spring to hold the...Ch. 3.3 - Take k = 180 N/m.Ch. 3.3 - If the spring has an unstretched length of 2 ft,...Ch. 3.3 - Cord AB is 2 ft long. Take k = 50 lb/ft.Ch. 3.3 - Determine the horizontal force F applied to the...Ch. 3.3 - Determine the displacement d of the cord from the...Ch. 3.3 - Determine the distances x and y for equilibrium if...Ch. 3.3 - Determine the magnitude of F1 and the distance y...Ch. 3.3 - Determine the force in each cord for equilibrium.Ch. 3.3 - Determine the largest mass of pipe that can be...Ch. 3.3 - If each light has a weight of 50 lb. determine the...Ch. 3.3 - Determine the tension developed in each cord...Ch. 3.3 - Determine the maximum mass of the lamp that the...Ch. 3.3 - If x = 2 m determine the force F and the sag s for...Ch. 3.3 - If F = 80 N. determine the sag s and distance x...Ch. 3.3 - Determine the tension in each cord and the angle ...Ch. 3.3 - Determine the largest weight of the lamp that can...Ch. 3.3 - Also, what is the force in cord AB? Hint: use the...Ch. 3.3 - Determine the position x and the tension developed...Ch. 3.3 - Prob. 37PCh. 3.3 - Take F = 300 N and d = 1 m.Ch. 3.3 - If a force of F = 100 N is applied horizontally to...Ch. 3.3 - If the cable can be attached at either points A...Ch. 3.3 - Determine the position x and the tension in the...Ch. 3.3 - The cord is fixed to a pin at A and passes over...Ch. 3.3 - Establish appropriate dimensions and use an...Ch. 3.3 - If the maximum tension that can be supported by...Ch. 3.3 - If the angle between AB and BC is 30, determine...Ch. 3.3 - If the distance BC is 1.5 m, and AB can support a...Ch. 3.4 - Determine the magnitude of forces F1, F2, F3, so...Ch. 3.4 - Determine the tension developed in cables AB, AC,...Ch. 3.4 - Determine the tension developed in cables AB, AC,...Ch. 3.4 - F310. Determine the tension developed in cables...Ch. 3.4 - Determine the tension in these wires.Ch. 3.4 - Determine the force developed in each cable for...Ch. 3.4 - Determine the magnitudes of F1, F2, and F3 for...Ch. 3.4 - If the bucket and its contents have a total weight...Ch. 3.4 - Each spring has on unstretched length of 2 m and a...Ch. 3.4 - Determine the force in each cable needed to...Ch. 3.4 - Determine the tension in the cables in order to...Ch. 3.4 - Determine the maximum mass of the crate so that...Ch. 3.4 - Determine the force in each cable if F = 500 lb.Ch. 3.4 - Determine the greatest force F that can be applied...Ch. 3.4 - Determine the tens on developed in cables AB and...Ch. 3.4 - Also, what is the force developed along strut AD?Ch. 3.4 - Determine the tension developed in each cable for...Ch. 3.4 - Determine the maximum weight of the crate that can...Ch. 3.4 - Prob. 56PCh. 3.4 - If each cord can sustain a maximum tension of 50 N...Ch. 3.4 - which has a mass of 15 kg. Take h = 4 m.Ch. 3.4 - Take h = 3.5 m.Ch. 3.4 - Determine the force in each chain for equilibrium....Ch. 3.4 - Determine the tension in each cable for...Ch. 3.4 - If the maximum force in each rod con not exceed...Ch. 3.4 - Determine the tension developed in each cable for...Ch. 3.4 - If cable AD is tightened by a turnbuckle and...Ch. 3.4 - If cable AD is tightened by a turnbuckle and...Ch. 3.4 - Determine the tension developed in cables AB, AC,...Ch. 3.4 - Determine the maximum weight of the crate so that...Ch. 3.4 - If the bolt exerts a force of 50 lb on the pipe in...Ch. 3.4 - Prob. 2RPCh. 3.4 - Determine the maximum weight of the flowerpot that...Ch. 3.4 - Determine the magnitude of the applied vertical...Ch. 3.4 - Prob. 5RPCh. 3.4 - Determine the magnitudes of F1, F2, and F3 for...Ch. 3.4 - Determine the force in each cable needed to...Ch. 3.4 - If cable AB is subjected to a tension of 700 N,...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
A submersible deep-well pump delivers 745 gal/h of water through a 1 -in Schedule 40 Typeequationhere. pipe whe...
Applied Fluid Mechanics (7th Edition)
ICA 17-24
The decay of a radioactive isotope can be theoretically modeled with the following equation, where C0...
Thinking Like an Engineer: An Active Learning Approach (3rd Edition)
At the instant = 45, the athlete is running with a constant speed of 2 m/s. Determine the angular velocity at ...
Engineering Mechanics: Dynamics (14th Edition)
What parts are included in the vehicle chassis?
Automotive Technology: Principles, Diagnosis, and Service (5th Edition)
Determine the force in members BC, CF, and FE and state if the members are in tension or compression. Prob. F5-...
Statics and Mechanics of Materials (5th Edition)
Determine the reactions at the fixed support A and the roller B. EI is constant.
Mechanics of Materials (10th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The center of gravity of the 850-N man is at G. If the man pulls on the rope with a 388-N force, determine the horizontal distance b between the man's feet and G.arrow_forwardThe backhoe and its contents have a combined weight of 300 kN and center of gravity at point G. Find the resulting force in cylinder AE and linkages AB and AD, indicating whether they are in Tension or Compression. Given: L1 = 300 mm, L2 = 75 mm, L3 = 450 mm, θ = 40 °, Φ = 60 °.arrow_forwardDetermine the resultant force and specify where it 2. acts on the beam measured from A. Also determine the reactions at A & B. 150 lb/ft B - 6 ft -8 ftarrow_forward
- The truck shown is used to deliver food to aircraft. The elevated unit weighs 2350 lb with center of gravity at G. Determine the required force in the hydraulic cylinder AB. The force is positive if in tension, negative if in compression. 46" 18" 64" Answer: AB= G D 70" 70" lbarrow_forwardReplace the three forces acting on the bent pipe by a single equivalent force R. Specify the distance d from point O to the point on the x-axis through which the line of action of R passes: 50 lb 40 lb 10 10" 10" 60 lbarrow_forwardDetermine the location of the resultant force acting on the beam from point A. Draw a free body diagram of the beam with the resultant force and it's location clearly labeled. Make sure you include the reactions at the supports in your free body diagram. 800 N/m -3 m 500 N/m 3 m Barrow_forward
- The pipe assembly in is secured on the wall by the two brackets. MOA = 60° lb. ft 4 ft 4 ft 3 ft 30⁰ 3 ft Part A If the flowerpot has a weight of 50 lb, determine the magnitude of the moment produced by the weight about the OA axis. Express your answer in pound-feet to three significant figures. ANSWER: B yarrow_forwardReplace the parallel force system acting on the plate by a resultant force and specify its location on the x-z plane. Solution: R = -10 kN, z = 1.4 m, x = 1 m %3D 0.5 marrow_forwardQ-4: 1.9 m B Two cables are used to secure the 2.5 m overhang boom in position and support the 8000 N load. If the resultant force is directed along the boom from point A towards O, determine the magnitudes of the resultant force and forces FB and Fc. Set x = 3.8 m and z = 4.3 m. FB FC 6.2 m %3D 8000 Narrow_forward
- If F1= 900 N and F2=500 N; Find the resultant forcearrow_forwardThe L-shaped rod AOCD has an 80 kg mass hanging from it at B. The rod is leaning against a smooth wall at A. Point B is half way up OA. There is a journal bearing at C and a thrust bearing at D. They are properly aligned. A force F is pulling in the x-direction at B. Just as the rod comes off of the wall at A, what is the magnitude of the force F. 1 m B F 1marrow_forward2. The backhoe supports a 7.5 kN weight of soil in the bucket which has a center of gravity at G. Find: 0.64 m 0.25 m ● 0.26 m 0.3 m 1.68 m Force in cylinder ED (indicate if force is in tension or compression) Force in cylinder FI (indicate if force is in tension or compression) OF 0.4 m 0.1 m A -1.44 m- 17.5 kN 0.25 m D B m E 0.22 m 0.45m H O SUSIS Force in ED = Force in FI = KN (Tor C) kN (Tor C)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
How to balance a see saw using moments example problem; Author: Engineer4Free;https://www.youtube.com/watch?v=d7tX37j-iHU;License: Standard Youtube License