A bent tube is attached to a wall with brackets as shown. . A force of F = 980 lb is applied to the end of the tube with direction indicated by the dimensions in the figure. a.) Determine the force vector F in Cartesian components. → → b.) Resolve the force vector F into vector components parallel and perpendicular to the position vector rDA. Express each of these vectors in Cartesian components. 2013 Michael Swanbom cc 10 BY NC SA g x B A א Z FK с кая b Values for dimensions on the figure are given in the table below. Note the figure may not be to scale. Be sure to align your cartesian unit vectors with the coordinate axes shown in the figure. Variable Value a 8 in 12 in с 15 in 36 in h 23 in g 28 in a. F = b. FDA = = ( + k) lb k) lb FIDA = 2 + k) lb

International Edition---engineering Mechanics: Statics, 4th Edition
4th Edition
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:Andrew Pytel And Jaan Kiusalaas
Chapter9: Moments And Products Of Inertia Of Areas
Section: Chapter Questions
Problem 9.46P
icon
Related questions
Question

please box out or highlight all the answers 

A bent tube is attached to a wall with brackets as shown. . A
force of F = 980 lb is applied to the end of the tube with
direction indicated by the dimensions in the figure.
a.) Determine the force vector F in Cartesian components.
→
→
b.) Resolve the force vector F into vector components
parallel and perpendicular to the position vector rDA.
Express each of these vectors in Cartesian components.
2013 Michael Swanbom
cc 10
BY NC SA
g
x
B
A
א
Z
FK
с
кая
b
Values for dimensions on the figure are given in the table
below. Note the figure may not be to scale. Be sure to align
your cartesian unit vectors with the coordinate axes shown in
the figure.
Variable
Value
a
8 in
12 in
с
15 in
36 in
h
23 in
g
28 in
a. F =
b. FDA =
= (
+
k) lb
k) lb
FIDA =
2 +
k) lb
Transcribed Image Text:A bent tube is attached to a wall with brackets as shown. . A force of F = 980 lb is applied to the end of the tube with direction indicated by the dimensions in the figure. a.) Determine the force vector F in Cartesian components. → → b.) Resolve the force vector F into vector components parallel and perpendicular to the position vector rDA. Express each of these vectors in Cartesian components. 2013 Michael Swanbom cc 10 BY NC SA g x B A א Z FK с кая b Values for dimensions on the figure are given in the table below. Note the figure may not be to scale. Be sure to align your cartesian unit vectors with the coordinate axes shown in the figure. Variable Value a 8 in 12 in с 15 in 36 in h 23 in g 28 in a. F = b. FDA = = ( + k) lb k) lb FIDA = 2 + k) lb
Expert Solution
steps

Step by step

Solved in 2 steps with 6 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
International Edition---engineering Mechanics: St…
International Edition---engineering Mechanics: St…
Mechanical Engineering
ISBN:
9781305501607
Author:
Andrew Pytel And Jaan Kiusalaas
Publisher:
CENGAGE L