
Concept explainers
To explain: the local extremums for a polynomial function of degree 3, 4, 5, and 6. Also describe the end behavior of the function.

Explanation of Solution
A polynomial function is of the form
Terms of a polynomial function should be arranged in descending order according to its degree to express it in a standard form and degree of each term should be a positive integer or whole number. The coefficients should be real numbers.
Leading coefficient of a polynomial function is the coefficient of the leading term.
Degree of the polynomial is the degree of leading term or the height degree in the polynomial function.
For the polynomial
The end behavior can describe the graph of a polynomial function as
The end behavior of a polynomial function can be determined by the leading coefficient and the degree of the polynomial.
If degree is even and leading coefficient is negative.
If degree is odd and leading coefficient is negative.
If degree is odd and leading coefficient is positive.
If degree is even and leading coefficient is positive.
Consider the graph of a polynomial function degree six.
An n degree polynomial can at most have
So, a 3 degree polynomial can have at most have
A 5 degree polynomial can have at most have
End behavior of an even degree and odd degree polynomial are similar.
Chapter 3 Solutions
Precalculus: Mathematics for Calculus - 6th Edition
- = 5 37 A 4 8 0.5 06 9arrow_forwardConsider the following system of equations, Ax=b : x+2y+3z - w = 2 2x4z2w = 3 -x+6y+17z7w = 0 -9x-2y+13z7w = -14 a. Find the solution to the system. Write it as a parametric equation. You can use a computer to do the row reduction. b. What is a geometric description of the solution? Explain how you know. c. Write the solution in vector form? d. What is the solution to the homogeneous system, Ax=0?arrow_forward2. Find a matrix A with the following qualities a. A is 3 x 3. b. The matrix A is not lower triangular and is not upper triangular. c. At least one value in each row is not a 1, 2,-1, -2, or 0 d. A is invertible.arrow_forward
- Find the exact area inside r=2sin(2\theta ) and outside r=\sqrt(3)arrow_forwardA 20 foot ladder rests on level ground; its head (top) is against a vertical wall. The bottom of the ladder begins by being 12 feet from the wall but begins moving away at the rate of 0.1 feet per second. At what rate is the top of the ladder slipping down the wall? You may use a calculator.arrow_forwardExplain the focus and reasons for establishment of 12.4.1(root test) and 12.4.2(ratio test)arrow_forward
- Use 12.4.2 to determine whether the infinite series on the right side of equation 12.6.5, 12.6.6 and 12.6.7 converges for every real number x.arrow_forwarduse Cauchy Mean-Value Theorem to derive Corollary 12.6.2, and then derive 12.6.3arrow_forwardExplain the focus and reasons for establishment of 12.5.4arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





