
a)
To express: the volume
a)

Answer to Problem 22RE
Explanation of Solution
Given information:
A small shelter for delicate plants is to be constructed of thin plastic material. It will have square ends and a rectangular top and back, with an open bottom and front, as shown in the figure. The total area of the four plastic sides is to be
Calculation:
Consider the diagram:
In this diagram, there are four plastic sides. Two sides are rectangular and two are square.
Area of the four plastic sides is
That is,
Here
To express this equation in terms of
To express the volume
Here,
b)
To draw: a graph of
b)

Explanation of Solution
Given information:
A small shelter for delicate plants is to be constructed of thin plastic material. It will have square ends and a rectangular top and back, with an open bottom and front, as shown in the figure. The total area of the four plastic sides is to be
Calculation:
Consider the diagram:
To draw a graph of a function
c)
To find: the dimensions will maximize the volume of the shelter.
c)

Answer to Problem 22RE
The dimensions of the shelter is
Explanation of Solution
Given information:
A small shelter for delicate plants is to be constructed of thin plastic material. It will have square ends and a rectangular top and back, with an open bottom and front, as shown in the figure. The total area of the four plastic sides is to be
Calculation:
Consider the diagram:
Consider the function
Taking the derivative with respect to
To maximize the volume of the shelter, equate the derivative zero.
To find the value of
Therefore, the dimensions of the shelter is
Chapter 3 Solutions
Precalculus: Mathematics for Calculus - 6th Edition
- The spread of an infectious disease is often modeled using the following autonomous differential equation: dI - - BI(N − I) − MI, dt where I is the number of infected people, N is the total size of the population being modeled, ẞ is a constant determining the rate of transmission, and μ is the rate at which people recover from infection. Close a) (5 points) Suppose ẞ = 0.01, N = 1000, and µ = 2. Find all equilibria. b) (5 points) For the equilbria in part a), determine whether each is stable or unstable. c) (3 points) Suppose ƒ(I) = d. Draw a phase plot of f against I. (You can use Wolfram Alpha or Desmos to plot the function, or draw the dt function by hand.) Identify the equilibria as stable or unstable in the graph. d) (2 points) Explain the biological meaning of these equilibria being stable or unstable.arrow_forwardFind the indefinite integral. Check Answer: 7x 4 + 1x dxarrow_forwardshow sketcharrow_forward
- Find the indefinite integral. Check Answer: 7x 4 + 1x dxarrow_forwardQuestion 1: Evaluate the following indefinite integrals. a) (5 points) sin(2x) 1 + cos² (x) dx b) (5 points) t(2t+5)³ dt c) (5 points) √ (In(v²)+1) 4 -dv ขarrow_forwardFind the indefinite integral. Check Answer: In(5x) dx xarrow_forward
- Find the indefinite integral. Check Answer: 7x 4 + 1x dxarrow_forwardHere is a region R in Quadrant I. y 2.0 T 1.5 1.0 0.5 0.0 + 55 0.0 0.5 1.0 1.5 2.0 X It is bounded by y = x¹/3, y = 1, and x = 0. We want to evaluate this double integral. ONLY ONE order of integration will work. Good luck! The dA =???arrow_forward43–46. Directions of change Consider the following functions f and points P. Sketch the xy-plane showing P and the level curve through P. Indicate (as in Figure 15.52) the directions of maximum increase, maximum decrease, and no change for f. ■ 45. f(x, y) = x² + xy + y² + 7; P(−3, 3)arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





