
How Fast Can You List Your Favorite Things? If you are asked to make a list of objects in a certain category, how fast you can list them follows a predictable pattern. For example, if you try to name as many vegetables as you can. you'll probably think of several right away— for example, carrots, peas, beans, com. and so on. Then after a pause you might think of ones you eat less frequently—perhaps zucchini, eggplant, and asparagus. Finally, a few more exotic vegetables might come to mind—artichokes, jicama, bok choy, and the like. A psychologist performs this experiment on a number of subjects. The table below gives the average number of vegetables that the subjects named by a given number of seconds.
- (a) Find the cubic polynomial that best fits the data
- (b) Draw a graph of the polynomial from part (a) together with a
scatter plot of the data. - (c) Use your result from part (b) to estimate the number of vegetables that subjects would be able to name in 40 s.
(d) According to the model, how long (to the nearest 0.1 s) would it take a person to name five vegetables?
Seconds | Number of vegetables |
1 | 2 |
2 | 6 |
5 | 10 |
10 | 12 |
15 | 14 |
20 | 15 |
25 | 18 |
30 | 21 |
(a)

To find: The cubic polynomial that best fits the data.
Answer to Problem 3P
The cubic polynomial that best fits the data is
Explanation of Solution
By the use of graphing calculator, the best fit cubic regression
Thus, the quadratic polynomial that best fits the data is
(b)

To draw: The graph of the quadratic polynomial from part (a) with the scatter plot of the data.
Explanation of Solution
Graph:
Consider the seconds as the x coordinates and the number of vegetable a person can name as the y coordinates.
From part (a), the cubic polynomial obtained is
The graph of the cubic polynomial with the scatter plot of the given data is shown below in Figure 1.
From Figure 1, the graph is an continuous and increasing curve.
(c)

To estimate: The number of vegetables a person can able to name in 40s.
Answer to Problem 3P
The number of vegetables a person can able to name in 40s is
Explanation of Solution
From part (b), it is observed that the value of x is 40 occurs when y is 40.9.
Therefore, the number of vegetables a person can able to name in 40s is
(d)

To estimate: The time will it take for a person to name five vegetable.
Answer to Problem 3P
The time will it take for a person to name five vegetable is
Explanation of Solution
From part (a), the model that best fits the data is
From part (b), it is observed that the value of y is 5 occurs when x is 2.01.
Therefore, the time will it take for a person to name five vegetable is
Chapter 3 Solutions
Precalculus: Mathematics for Calculus - 6th Edition
- Q1: A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time. Find the velocity and acceleration of the slider when t = 0.3 seconds. t(seconds) x(cm) 0 0.1 0.2 0.3 0.4 0.5 0.6 30.13 31.62 32.87 33.64 33.95 33.81 33.24 Q2: Using the Runge-Kutta method of fourth order, solve for y atr = 1.2, From dy_2xy +et = dx x²+xc* Take h=0.2. given x = 1, y = 0 Q3:Approximate the solution of the following equation using finite difference method. ly -(1-y= y = x), y(1) = 2 and y(3) = −1 On the interval (1≤x≤3).(taking h=0.5).arrow_forwardConsider the function f(x) = x²-1. (a) Find the instantaneous rate of change of f(x) at x=1 using the definition of the derivative. Show all your steps clearly. (b) Sketch the graph of f(x) around x = 1. Draw the secant line passing through the points on the graph where x 1 and x-> 1+h (for a small positive value of h, illustrate conceptually). Then, draw the tangent line to the graph at x=1. Explain how the slope of the tangent line relates to the value you found in part (a). (c) In a few sentences, explain what the instantaneous rate of change of f(x) at x = 1 represents in the context of the graph of f(x). How does the rate of change of this function vary at different points?arrow_forward1. The graph of ƒ is given. Use the graph to evaluate each of the following values. If a value does not exist, state that fact. и (a) f'(-5) (b) f'(-3) (c) f'(0) (d) f'(5) 2. Find an equation of the tangent line to the graph of y = g(x) at x = 5 if g(5) = −3 and g'(5) = 4. - 3. If an equation of the tangent line to the graph of y = f(x) at the point where x 2 is y = 4x — 5, find ƒ(2) and f'(2).arrow_forward
- Can you help explain what I did based on partial fractions decomposition?arrow_forwardSuppose that a particle moves along a straight line with velocity v (t) = 62t, where 0 < t <3 (v(t) in meters per second, t in seconds). Find the displacement d (t) at time t and the displacement up to t = 3. d(t) ds = ["v (s) da = { The displacement up to t = 3 is d(3)- meters.arrow_forwardLet f (x) = x², a 3, and b = = 4. Answer exactly. a. Find the average value fave of f between a and b. fave b. Find a point c where f (c) = fave. Enter only one of the possible values for c. c=arrow_forward
- please do Q3arrow_forwardUse the properties of logarithms, given that In(2) = 0.6931 and In(3) = 1.0986, to approximate the logarithm. Use a calculator to confirm your approximations. (Round your answers to four decimal places.) (a) In(0.75) (b) In(24) (c) In(18) 1 (d) In ≈ 2 72arrow_forwardFind the indefinite integral. (Remember the constant of integration.) √tan(8x) tan(8x) sec²(8x) dxarrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





