(a)
The magnetic field at the surface of the inner conductor.
(a)
Answer to Problem 75AP
The magnetic field at the surface of the inner conductor is
Explanation of Solution
Write the expression for power.
Her,
Rewrite the above equation for
Write the expression for magnetic field.
Here,
Substitute
Conclusion:
Substitute
Further solve the above equation.
Therefore, magnetic field at the surface of the inner conductor is
(b)
The magnetic field at the inner surface of the outer conductor.
(b)
Answer to Problem 75AP
The magnetic field at the inner surface of the outer conductor is
Explanation of Solution
Conclusion:
Substitute
Further solve the above equation.
Therefore, magnetic field at the inner surface of the outer conductor is
(c)
The energy stored in the magnetic field in the space between the conductors in a
(c)
Answer to Problem 75AP
The energy stored in the magnetic field in the space between the conductors is
Explanation of Solution
Write the expression for energy stored in the magnetic field.
Here,
Substitute,
Conclusion:
Substitute
Substitute
Therefore, the energy stored in the magnetic field in the space between the conductors is
(d)
The pressure exerted on the outer conductor due to the current in the inner conductor.
(d)
Answer to Problem 75AP
The pressure exerted on the outer conductor due to the current in the inner conductor is
Explanation of Solution
Consider a small rectangular section of the outer cylinder of length
Write the expression for the force.
Here,
Substitute
Write the expression for pressure.
Here,
Substitute
Conclusion:
Substitute
Therefore, the pressure exerted on the outer conductor due to the current in the inner conductor is
Want to see more full solutions like this?
Chapter 32 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- No chatgpt plsarrow_forwardhelp me with the experimental set up for the excel i did. the grapharrow_forwardWhich of the following best describes how to calculate the average acceleration of any object? Average acceleration is always halfway between the initial acceleration of an object and its final acceleration. Average acceleration is always equal to the change in velocity of an object divided by the time interval. Average acceleration is always equal to the displacement of an object divided by the time interval. Average acceleration is always equal to the change in speed of an object divided by the time interval.arrow_forward
- The figure shows the velocity versus time graph for a car driving on a straight road. Which of the following best describes the acceleration of the car? v (m/s) t(s) The acceleration of the car is negative and decreasing. The acceleration of the car is constant. The acceleration of the car is positive and increasing. The acceleration of the car is positive and decreasing. The acceleration of the car is negative and increasing.arrow_forwardWhich figure could represent the velocity versus time graph of a motorcycle whose speed is increasing? v (m/s) v (m/s) t(s) t(s)arrow_forwardUnlike speed, velocity is a the statement? Poisition. Direction. Vector. Scalar. quantity. Which one of the following completesarrow_forward
- No chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward3.63 • Leaping the River II. A physics professor did daredevil stunts in his spare time. His last stunt was an attempt to jump across a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at 53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower than the top of the ramp. The river itself was 100 m below the ramp. Ignore air resistance. (a) What should his speed have been at the top of the ramp to have just made it to the edge of the far bank? (b) If his speed was only half the value found in part (a), where did he land? Figure P3.63 53.0° 100 m 40.0 m→ 15.0 marrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning