Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 32, Problem 18P
(a)
To determine
The graph of the current for the given circuit as function a function of time when the inductance is zero.
(b)
To determine
The graph of the current for the given circuit as function a function of time when the inductance has an intermediate value.
(c)
To determine
The graph of the current for the given circuit as function a function of time when the inductance has a very large value.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 10.00 μF capacitor C is initially charged to a voltage V of 10.00 (V). It is then connected in series with an inductor L. Charge and current oscillations ensue.
(a) What is the total energy U of the circuit?
(b) If the maximum current in the inductor is Im = 0.500 (A), then what is the inductance L? What is the charge Q on the positive plate of the capacitor when the current reaches its maximum value Im?
(c) What is the angular frequency of the charge oscillations?
After reaching steady state, an RL circuit is disconnected from the battery such that the circuit
consists of a resistor and inductor wired in series. The resulting current through the inductor (with
t 0 corresponding to the moment the battery is disconnected) is indicated below as a function of
time t for four sets of values for the resistance R and the inductance L: (1) Ro and Lo, (2) 2Ro and
Lo, (3) Ro and 2Lo, (4) 2Ro and 2Lo
After reaching steady state, an RL circuit is disconnected from the battery such that the circuit
consists of a resistor and inductor wired in series. The resulting current through the inductor (with
t = 0 corresponding to the moment the battery is disconnected) is indicated below as a function of
time t for four sets of values for the resistance R and the inductance L: (1) Ro and Lo, (2) 2Ro and
Lo, (3) Ro and 2L。 (4) 2R0 and 2L0.
Which set goes with which curve? Explain your answers.
Chapter 32 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 32.1 - A coil with zero resistance has its ends labeled a...Ch. 32.2 - Prob. 32.2QQCh. 32.3 - Prob. 32.3QQCh. 32.4 - Prob. 32.4QQCh. 32.5 - (i) At an instant of time during the oscillations...Ch. 32 - Prob. 1OQCh. 32 - Prob. 2OQCh. 32 - Prob. 3OQCh. 32 - Prob. 4OQCh. 32 - Prob. 5OQ
Ch. 32 - Prob. 6OQCh. 32 - Prob. 7OQCh. 32 - Prob. 1CQCh. 32 - Prob. 2CQCh. 32 - Prob. 3CQCh. 32 - Prob. 4CQCh. 32 - Prob. 5CQCh. 32 - Prob. 6CQCh. 32 - The open switch in Figure CQ32.7 is thrown closed...Ch. 32 - Prob. 8CQCh. 32 - Prob. 9CQCh. 32 - Prob. 10CQCh. 32 - Prob. 1PCh. 32 - Prob. 2PCh. 32 - Prob. 3PCh. 32 - Prob. 4PCh. 32 - Prob. 5PCh. 32 - Prob. 6PCh. 32 - Prob. 7PCh. 32 - Prob. 8PCh. 32 - Prob. 9PCh. 32 - Prob. 10PCh. 32 - Prob. 11PCh. 32 - Prob. 12PCh. 32 - Prob. 13PCh. 32 - Prob. 14PCh. 32 - Prob. 15PCh. 32 - Prob. 16PCh. 32 - Prob. 17PCh. 32 - Prob. 18PCh. 32 - Prob. 19PCh. 32 - Prob. 20PCh. 32 - Prob. 21PCh. 32 - Prob. 22PCh. 32 - Prob. 23PCh. 32 - Prob. 24PCh. 32 - Prob. 25PCh. 32 - Prob. 26PCh. 32 - Prob. 27PCh. 32 - Prob. 28PCh. 32 - Prob. 29PCh. 32 - Prob. 30PCh. 32 - Prob. 31PCh. 32 - Prob. 32PCh. 32 - Prob. 33PCh. 32 - Prob. 34PCh. 32 - Prob. 35PCh. 32 - Prob. 36PCh. 32 - Prob. 37PCh. 32 - Prob. 38PCh. 32 - Prob. 39PCh. 32 - Prob. 40PCh. 32 - Prob. 41PCh. 32 - Prob. 42PCh. 32 - Prob. 43PCh. 32 - Prob. 44PCh. 32 - Prob. 45PCh. 32 - Prob. 46PCh. 32 - Prob. 47PCh. 32 - Prob. 48PCh. 32 - Prob. 49PCh. 32 - Prob. 50PCh. 32 - Prob. 51PCh. 32 - Prob. 52PCh. 32 - Prob. 53PCh. 32 - Prob. 54PCh. 32 - Prob. 55PCh. 32 - Prob. 56PCh. 32 - Prob. 57PCh. 32 - Prob. 58PCh. 32 - Electrical oscillations are initiated in a series...Ch. 32 - Prob. 60APCh. 32 - Prob. 61APCh. 32 - Prob. 62APCh. 32 - A capacitor in a series LC circuit has an initial...Ch. 32 - Prob. 64APCh. 32 - Prob. 65APCh. 32 - At the moment t = 0, a 24.0-V battery is connected...Ch. 32 - Prob. 67APCh. 32 - Prob. 68APCh. 32 - Prob. 69APCh. 32 - Prob. 70APCh. 32 - Prob. 71APCh. 32 - Prob. 72APCh. 32 - Prob. 73APCh. 32 - Prob. 74APCh. 32 - Prob. 75APCh. 32 - Prob. 76APCh. 32 - Prob. 77APCh. 32 - Prob. 78CPCh. 32 - Prob. 79CPCh. 32 - Prob. 80CPCh. 32 - Prob. 81CPCh. 32 - Prob. 82CPCh. 32 - Prob. 83CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The self-inductance and capacitance of an LC circuit e 0.20 mH and 5.0 pF. What is the angular frequency at which the circuit oscillates?arrow_forwardIn the LC circuit in Figure 33.11, the inductance is L = 19.8 mH and the capacitance is C = 19.6 mF. At some moment, UB = UE= 17.5 mJ. a. What is the maximum charge stored by the capacitor? b. What is the maximum current in the circuit? c. At t = 0, the capacitor is fully charged. Write an expression for the charge stored by the capacitor as a function of lime. d. Write an expression for the current as a function of time.arrow_forward(i) When a particular inductor is connected to a source of sinusoidally varying emf with constant amplitude and a frequency of 60.0 Hz, the rms current is 3.00 A. What is the rms current if the source frequency is doubled? (a) 12.0 A (b) 6.00 A (c) 4.24 A (d) 3.00 A (e) 1.50 A (ii) Repeat part (i) assuming the load is a capacitor instead of an inductor. (iii) Repeat part (i) assuming the load is a resistor instead of an inductor.arrow_forward
- What resistance R should be connected in series with an inductance L= 220 mH and capacitance C= 12.0 mF for the maximum charge on the capacitor to decay to 99.0% of its initial value in 50.0 cycles?arrow_forwardAn electromagnet can be modeled as an inductor in series with a resistor. Consider a large electromagnet of inductance L = 14.0 H and resistance R = 7.50 connected to a 12.0-V battery and switch as in the figure shown below. After the switch is closed, find the following. R www @ (a) the maximum current carried by the electromagnet (b) the time constant of the circuit S (c) the time it takes the current to reach 95.0% of its maximum value sarrow_forwardc) The current follows in a charging inductor I(t) at time t seconds is given by: i(t) = I,(1 – e7) mA Where I, is the supply current and t= 30. 1. Evaluate the following The current flows in the inductor up to 3 significant figures after 24 seconds if the supply current I, = 75 mA The time t to 3 significant figures taken for current flows in the inductor to reach 40 mA if the supply current Is remains at 75 mA. i. ii. 2. Find an equation for the energy and evaluate it when L= 10 mH.arrow_forward
- An electromagnet can be modeled as an inductor in series with a resistor. Consider a large electromagnet of inductance L = 12.5 H and resistance R = 5.50 0 connected to a 12.0-V battery and switch figure shown below. After the switch is closed, find the following. R (a) the maximum current carried by the electromagnet (b) the time constant of the circuit (c) the time it takes the current to reach 95.0% of its maximum valuearrow_forwardA 90.0 mH inductor is connected in a circuit. The current through the inductor is given by the function t²-6. At 10 s what will be the magnitude of the induced emf?arrow_forwardIn a series RL circuit, the resistance is 135 ohms, the inductance is 120 x 10-3 H, and the source of electromotive force is ξ. After some time, the current in the circuit reaches its maximum value, and at this time the energy stored in the inductor is 230 x 10-3 J. a) What is the value of ξ? b) Next, we remove the electromotive force source and connect the inductor directly to the resistor. How long will it take for the energy stored in the inductor to decrease to half of its initial value?arrow_forward
- An electromagnet can be modeled as an inductor in series with a resistor. Consider a large electromagnet of inductance L = 14.5 H and resistance R = 8.00 n connected to a 18.0-V battery and switch as in the figure shown below. After the switch is closed, find the following. R (a) the maximum current carried by the electromagnet (b) the time constant of the circuit (c) the time it takes the current to reach 95.0% of its maximum valuearrow_forwardc) The current follows in a charging inductor I(t) at time t seconds is given by: i(t) = 1,(1- e i) mA Where I, is the supply current and t= 30. 1. Evaluate the following The current flows in the inductor up to 3 significant figures after 24 seconds if the supply current I, = 75 mA The time t to 3 significant figures taken for current flows in the inductor to reach 40 mA if the supply current Is remains at 75 mA. i. ii. 2. Find an equation for the energy and evaluate it when L= 10 mH. d) The generated voltage of a turbine at timet seconds is given by: v(t) = Vssin(0.4nt +) Where Vs is generator voltage in Volts. Evaluate the following: iii. The voltage of the generator after 2.5 seconds if Vs = 70 V. The voltage at time t = 0 seconds to 3 significant figures The time when the generator first reaches maximum voltage, the period, the frequency, and the time displacement. iv. v. Your answer to this part of the task should be supported by suitably annotated graphical evidence to help…arrow_forwardAn electromagnet can be modeled as an inductor in series with a resistor. Consider a large electromagnet of inductance L = 10.5 H and resistance R = 7.00 connected to a 15.0-V battery and switch as in the figure shown below. After the switch is closed, find the following. S + E R www (a) the maximum current carried by the electromagnet A (b) the time constant of the circuit S (c) the time it takes the current to reach 95.0% of its maximum value Sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning