Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 32, Problem 30P

(a)

To determine

To show: The equivalent inductance is Leq=L1+L2 .

(a)

Expert Solution
Check Mark

Answer to Problem 30P

The equivalent inductance in series combination is Leq=L1+L2 .

Explanation of Solution

Given info: The inductance of the inductor are L1 and L2 . The internal resistances of them are zero.

For a series connection, both inductor carry equal currents at every instant. So the change in current didt is same for both inductor.

Write the expression to calculate the voltage across the pair.

Leqdidt=L1didt+L2didtLeq=L1+L2

Conclusion:

Therefore, the equivalent inductance is Leq=L1+L2 .

(b)

To determine

To show: The equivalent inductance in parallel combination is 1Leq=1L1+1L2 .

(b)

Expert Solution
Check Mark

Answer to Problem 30P

The equivalent inductance in parallel combination is 1Leq=1L1+1L2 .

Explanation of Solution

Given info: The inductance of the inductor are L1 and L2 . The internal resistances of them are zero.

For a parallel connection, the voltage across each inductor is same for both.

Write the expression to calculate the voltage across each inductor.

Leqdidt=L2didt=L2didt=ΔVL

The current in the connection is,

didt=di1dt+di2dt (1)

Here,

i1 is the current in first inductor.

i2 is the current in second inductor.

The change in current in equivalent inductor is,

didt=ΔVLLeq

The change in current in first inductor is,

di1dt=ΔVLL1

The change in current in second inductor is,

di2dt=ΔVLL2

Substitute ΔVLLeq for didt , ΔVLL1 for di1dt and ΔVLL2 for di2dt in equation (1).

ΔVLLeq=ΔVLL1+ΔVLL21Leq=1L1+1L2

Thus, the equivalent inductance in parallel combination is 1Leq=1L1+1L2 .

Conclusion:

Therefore, the equivalent inductance in parallel combination is 1Leq=1L1+1L2 .

(c)

To determine

To show: The equivalent inductance and resistance when their internal resistance is non zero in series combination is Leq=L1+L2 and Req=R1+R2 respectively.

(c)

Expert Solution
Check Mark

Answer to Problem 30P

The equivalent inductance in parallel combination is 1Leq=1L1+1L2 .

Explanation of Solution

Given info: The inductance of the inductor are L1 and L2 . The internal resistances of them are R1 and R2 .

Write the expression to calculate the voltage across the connection.

Leqdidt+Reqi=L1didt+iR1+L2didt+iR2

Here, i and didt are independent quantities under our control so functional equality requires both Leq=L1+L2 and Req=R1+R2 conditions satisfied.

Thus, the equivalent inductance and resistance when their internal resistance is non zero in series combination is Leq=L1+L2 and Req=R1+R2 respectively.

Conclusion:

Therefore, the equivalent inductance and resistance when their internal resistance is non zero in series combination is Leq=L1+L2 and Req=R1+R2 respectively.

(d)

To determine

Whether it is necessarily true that they are equivalent to a single ideal inductor having 1Leq=1L1+1L2 and 1Req=1R1+1R2 .

(d)

Expert Solution
Check Mark

Answer to Problem 30P

It is necessarily true that they are equivalent to a single ideal inductor having 1Leq=1L1+1L2 and 1Req=1R1+1R2 .

Explanation of Solution

Given info: The inductance of the inductor are L1 and L2 . The internal resistances of them are R1 and R2 .

If the circuit elements are connected in parallel then two conditions always true.

The first condition is,

i=i1+i2ΔVLReq=ΔVLR1+ΔVLR21Req=1R1+1R2

The second condition is,

didt=di1dt+di2dtΔVLLeq=ΔVLL1+ΔVLL21Leq=1L1+1L2

Thus, it is necessarily true that they are equivalent to a single ideal inductor having 1Leq=1L1+1L2 and 1Req=1R1+1R2 .

Conclusion:

Therefore, it is necessarily true that they are equivalent to a single ideal inductor having 1Leq=1L1+1L2 and 1Req=1R1+1R2 .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Inductors in parallel. Two inductors L1 = 1.05 H and L2 = 2.01 H are connected in parallel and separated by a large distance so that the magnetic field of one cannot affect the other. (a) Calculate the equivalent inductance. (Hint: Review the derivations for resistors in parallel and capacitors in parallel.Which is similar here?) (b) What is the generalization of (a) for N = 10 similar inductors L = 3.06 H in parallel?
What is the total energy stored in the 10 pH and 60 μH inductors if a current of 2 Amps flows through them? 70× 10-6J 7×10-6J 140 × 10-6J 280 × 10-6J 5μΗ 10 Η 60μ Η
In a practical electrical circuit, inductors are often coils of wire in the form of a solenoid. Consider a solenoid of length 2.0 cm consisting of 1000 turns of wire. Each turn is a circular loop with a radius of 0.50 cm. Calculate the value of L.

Chapter 32 Solutions

Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University

Ch. 32 - Prob. 6OQCh. 32 - Prob. 7OQCh. 32 - Prob. 1CQCh. 32 - Prob. 2CQCh. 32 - Prob. 3CQCh. 32 - Prob. 4CQCh. 32 - Prob. 5CQCh. 32 - Prob. 6CQCh. 32 - The open switch in Figure CQ32.7 is thrown closed...Ch. 32 - Prob. 8CQCh. 32 - Prob. 9CQCh. 32 - Prob. 10CQCh. 32 - Prob. 1PCh. 32 - Prob. 2PCh. 32 - Prob. 3PCh. 32 - Prob. 4PCh. 32 - Prob. 5PCh. 32 - Prob. 6PCh. 32 - Prob. 7PCh. 32 - Prob. 8PCh. 32 - Prob. 9PCh. 32 - Prob. 10PCh. 32 - Prob. 11PCh. 32 - Prob. 12PCh. 32 - Prob. 13PCh. 32 - Prob. 14PCh. 32 - Prob. 15PCh. 32 - Prob. 16PCh. 32 - Prob. 17PCh. 32 - Prob. 18PCh. 32 - Prob. 19PCh. 32 - Prob. 20PCh. 32 - Prob. 21PCh. 32 - Prob. 22PCh. 32 - Prob. 23PCh. 32 - Prob. 24PCh. 32 - Prob. 25PCh. 32 - Prob. 26PCh. 32 - Prob. 27PCh. 32 - Prob. 28PCh. 32 - Prob. 29PCh. 32 - Prob. 30PCh. 32 - Prob. 31PCh. 32 - Prob. 32PCh. 32 - Prob. 33PCh. 32 - Prob. 34PCh. 32 - Prob. 35PCh. 32 - Prob. 36PCh. 32 - Prob. 37PCh. 32 - Prob. 38PCh. 32 - Prob. 39PCh. 32 - Prob. 40PCh. 32 - Prob. 41PCh. 32 - Prob. 42PCh. 32 - Prob. 43PCh. 32 - Prob. 44PCh. 32 - Prob. 45PCh. 32 - Prob. 46PCh. 32 - Prob. 47PCh. 32 - Prob. 48PCh. 32 - Prob. 49PCh. 32 - Prob. 50PCh. 32 - Prob. 51PCh. 32 - Prob. 52PCh. 32 - Prob. 53PCh. 32 - Prob. 54PCh. 32 - Prob. 55PCh. 32 - Prob. 56PCh. 32 - Prob. 57PCh. 32 - Prob. 58PCh. 32 - Electrical oscillations are initiated in a series...Ch. 32 - Prob. 60APCh. 32 - Prob. 61APCh. 32 - Prob. 62APCh. 32 - A capacitor in a series LC circuit has an initial...Ch. 32 - Prob. 64APCh. 32 - Prob. 65APCh. 32 - At the moment t = 0, a 24.0-V battery is connected...Ch. 32 - Prob. 67APCh. 32 - Prob. 68APCh. 32 - Prob. 69APCh. 32 - Prob. 70APCh. 32 - Prob. 71APCh. 32 - Prob. 72APCh. 32 - Prob. 73APCh. 32 - Prob. 74APCh. 32 - Prob. 75APCh. 32 - Prob. 76APCh. 32 - Prob. 77APCh. 32 - Prob. 78CPCh. 32 - Prob. 79CPCh. 32 - Prob. 80CPCh. 32 - Prob. 81CPCh. 32 - Prob. 82CPCh. 32 - Prob. 83CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Introduction To Alternating Current; Author: Tutorials Point (India) Ltd;https://www.youtube.com/watch?v=0m142qAZZpE;License: Standard YouTube License, CC-BY