
Concept explainers
(i)
The relative orientation of the loops so that their mutual inductance is maximum.
(i)

Answer to Problem 1OQ
The loops are oriented parallel to each other so that mutual induction is maximum. Thus, option (a) coaxial and lying in parallel planes is correct.
Explanation of Solution
The two circular loops are separated by a fixed distance, thus, for the maximum mutual inductance; the two loops should be coaxial and lying in parallel planes. This is because of the reason that if these loops are arranged parallel to each other, then the flux through one loop is entirely passing through the other loop. Hence, the mutual inductance is maximum when the loops are parallel to each other.
Conclusion:
Since, the mutual inductance is maximum when the loops are oriented parallel to each other, therefore, option (a) is correct.
When the loops are lying in the same plane, there is no flux linkage between the two loops. Therefore, option (b) is incorrect.
When the loops are lying in the perpendicular planes, with the center of one on the axis of the other, the mutual inductance is minimum. Therefore, option (c) is incorrect.
Since, the mutual inductance depends on the orientation of the loops, therefore, option (d) is incorrect.
(ii)
The relative orientation of the loops so that their mutual inductance is minimum.
(ii)

Answer to Problem 1OQ
The loops are oriented perpendicular to each other so that mutual induction is minimum. Thus, option (c) lying in the perpendicular planes, with the center of one on the axis of the other; is correct.
Explanation of Solution
The two circular loops are separated by a fixed distance, thus, for the minimum mutual inductance; the two loops should be lying in the perpendicular planes, with the center of one on the axis of the other. This is because of the reason that if these loops are arranged perpendicular to each other, then the flux through one loop does not pass through the other loop. Hence, the mutual inductance is minimum when the loops are perpendicular to each other.
Conclusion:
Since, the mutual inductance is minimum when the loops are oriented perpendicular to each other, therefore, option (c) is correct.
When the loops are coaxial and lying in the parallel planes, the mutual inductance is maximum. Therefore, option (a) is incorrect.
When the loops are lying in the same plane, there is no flux linkage between the two loops. Therefore, option (b) is incorrect.
Since, the mutual inductance depends on the orientation of the loops, therefore, option (d) is incorrect.
Want to see more full solutions like this?
Chapter 32 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- (a) For a spherical capacitor with inner radius a and outer radius b, we have the following for the capacitance. ab C = k₂(b- a) 0.0695 m 0.145 m (8.99 × 10º N · m²/c²)( [0.145 m- 0.0695 m × 10-11 F = PF IIarrow_forwardA pendulum bob A (0.5 kg) is given an initialspeed of vA = 4 m/s when the chord ishorizontal. It then hits a stationary block B (1kg) which then slides to a maximum distanced before it stops. Determine the value of d.The coefficient of static friction between theblock and the plane is μk = 0.2. The coefficientof restitution between A and B is e = 0.8.Ans: d=1.0034 marrow_forwardFigure 29-43 Problem 12. ••13 In Fig. 29-44, point P₁ is at distance R = 13.1 cm on the perpendicular bisector of a straight wire of length L = 18.0 cm carrying current i = 58.2 mA. (Note that the wire is not long.) What is the magnitude of the magnetic field at P₁ due to i? P2° R R Larrow_forward
- Checkpoint 1 The figure shows the current i in a single-loop circuit with a battery B and a resistance R (and wires of neg- ligible resistance). (a) Should the emf arrow at B be drawn pointing leftward or rightward? At points a, B C R b, and c, rank (b) the magnitude of the current, (c) the electric potential, and (d) the electric potential energy of the charge carriers, greatest first.arrow_forwardPls help ASAParrow_forwardPls help asaparrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning





