Reword Definition
Definition
: Product Notation
Let
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Elements Of Modern Algebra
- Let a,b,c, and d be elements of a group G. Find an expression for (abcd)1 in terms of a1,b1,c1, and d1.arrow_forwardExercises 7. Let be an element of order in a group. Find the order of each of the following. a. b. c. d. e. f. g.arrow_forwardFind the order of each of the following elements in the multiplicative group of units . for for for forarrow_forward
- Exercises 21. Suppose is a cyclic group of order. Determine the number of generators of for each value of and list all the distinct generators of . a. b. c. d. e. f.arrow_forward9. Find all homomorphic images of the octic group.arrow_forwardExercises 3. Find the order of each element of the group in Example of section. Example 3. We shall take and obtain an explicit example of . In order to define an element of , we need to specify , , and . There are three possible choices for . Since is to be bijective, there are two choices for after has been designated, and then only one choice for . Hence there are different mappings in .arrow_forward
- Let G1 and G2 be groups with respect to addition. Define equality and addition in the Cartesian product by G1G2 (a,b)=(a,b) if and only if a=a and b=a (a,b)+(c,d)=(ac,bd) Where indicates the addition in G1 and indicates the addition in G2. Prove that G1G2 is a group with respect to addition. Prove that G1G2 is abelian if both G1 and G2 are abelian. For notational simplicity, write (a,b)+(c,d)=(a+c,b+d) As long as it is understood that the additions in G1 and G2 may not be the same binary operations. (Sec. 3.4,27, Sec. 3.5,14,15,27,28, Sec. 3.6,12, Sec. 5.1,51) Sec. 3.4,27 Prove or disprove that each of the following groups with addition as defined in Exercises 52 of section 3.1 is cyclic. a. 23 b. 24 Sec. 3.5,14,15,27,28, Consider the additive group of real numbers. Prove or disprove that each of the following mappings : is an automorphism. Equality and addition are defined on in Exercise 52 of section 3.1. a. (x,y)=(y,x) b. (x,y)=(x,y) Consider the additive group of real numbers. Prove or disprove that each of the following mappings : is an isomorphism. a. (x,y)=x b. (x,y)=x+y Consider the additive groups 2, 3, and 6. Prove that 6 is isomorphic to 23. Let G1, G2, H1, and H2 be groups with respect to addition. If G1 is isomorphic to H1 and G2 is isomorphic to H2, prove that G1G2 is isomorphic to H1H2. Sec. 3.6,12 Consider the additive group of real numbers. Let be a mapping from to , where equality and addition are defined in Exercise 52 of Section 3.1. Prove or disprove that each of the following mappings is a homomorphism. If is a homomorphism, find ker , and decide whether is an epimorphism or a monomorphism. a. (x,y)=xy b. (x,y)=2x Sec. 5.1,51 Let R and S be arbitrary rings. In the Cartesian product RS of R and S, define (r,s)=(r,s) if and only if r=r and s=s (r1,s1)+(r2,s2)=(r1+r2,s1+s2), (r1,s1)(r2,s2)=(r1r2,s1s2). a. Prove that the Cartesian product is a ring with respect to these operations. It is called the direct sum of R and S and is denoted by RS. b. Prove that RS is commutative if both R and S are commutative. c. Prove that RS has a unity element if both R and S have unity elements. d. Give an example of rings R and S such that RS does not have a unity element.arrow_forward50. Find the multiplicative inverse of in the given group. a. b.arrow_forward9. Find all elements in each of the following groups such that . under addition. under multiplication.arrow_forward
- Find all subgroups of the octic group D4.arrow_forwardExercises In Section 3.3, the centralizer of an element a in the group G was shown to be the subgroup given by Ca=xGax=xa. Use the multiplication table constructed in Exercise 20 to find the centralizer Ca for each element a of the octic group D4. Construct a multiplication table for the octic group D4 described in Example 12 of this section.arrow_forwardExercises 8. Find an isomorphism from the group in Example of this section to the multiplicative group . Sec. 16. Prove that each of the following sets is a subgroup of , the general linear group of order over .arrow_forward
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,