Find subgroups
From Example
Trending nowThis is a popular solution!
Chapter 3 Solutions
Elements Of Modern Algebra
- Find subgroups H and K of the group S(A) in example 3 of section 3.1 such that HK is not a subgroup of S(A). From Example 3 of section 3.1: A=1,2,3 and S(A) is a set of all permutations defined on A.arrow_forward12. Find all homomorphic images of each group in Exercise of Section. 18. Let be the group of units as described in Exercise. For each value of, write out the elements of and construct a multiplication table for . a. b. c. d.arrow_forwardLet be a group of order 24. If is a subgroup of , what are all the possible orders of ?arrow_forward
- Let H and K be subgroups of a group G and K a subgroup of H. If the order of G is 24 and the order of K is 3, what are all the possible orders of H?arrow_forward42. For an arbitrary set , the power set was defined in Section by , and addition in was defined by Prove that is a group with respect to this operation of addition. If has distinct elements, state the order of .arrow_forwardLet A be a given nonempty set. As noted in Example 2 of section 3.1, S(A) is a group with respect to mapping composition. For a fixed element a In A, let Ha denote the set of all fS(A) such that f(a)=a.Prove that Ha is a subgroup of S(A). From Example 2 of section 3.1: Set A is a one to one mapping from A onto A and S(A) denotes the set of all permutations on A. S(A) is closed with respect to binary operation of mapping composition. The identity mapping I(A) in S(A), fIA=f=IAf for all fS(A), and also that each fS(A) has an inverse in S(A). Thus we conclude that S(A) is a group with respect to composition of mapping.arrow_forward
- Let G be the group and H the subgroup given in each of the following exercises of Section 4.4. In each case, is H normal in G? Exercise 3 b. Exercise 4 c. Exercise 5 d. Exercise 6 e. Exercise 7 f. Exercise 8 Section 4.4 Let H be the subgroup e, of the octic group D4. Find the distinct left cosets of H in D4, write out their elements, partition D4 into left cosets of H, and give [D4:H]. Find the distinct right cosets of H in D4, write out their elements, and partition D4 into right cosets of H. Let H be the subgroup e, of the octic group D4. Find the distinct left cosets of H in D4, write out their elements, partition D4 into left cosets of H, and give [D4:H]. Find the distinct right cosets of H in D4, write out their elements, and partition D4 into right cosets of H. Let H be the subgroup e, of the octic group D4. Find the distinct left cosets of H in D4, write out their elements, partition D4 into left cosets of H, and give [D4:H]. Find the distinct right cosets of H in D4, write out their elements, and partition D4 into right cosets of H. Let H be the subgroup (1),(2,3) of S3. Find the distinct left cosets of H in S3, write out their elements, partition S3 into left cosets of H, and give [S3:H]. Find the distinct right cosets of H in S3, write out their elements, and partition S3 into right cosets of H. In Exercises 7 and 8, let G be the multiplicative group of permutation matrices I3,P3,P32,P1,P4,P2 in Example 6 of Section 3.5 Let H be the subgroup of G given by H=I3,P4={ (100010001),(001010100) }. Find the distinct left cosets of H in G, write out their elements, partition G into left cosets of H, and give [G:H]. Find the distinct right cosets of H in G, write out their elements, and partition G into right cosets of H. Let H be the subgroup of G given by H=I3,P3,P32={ (100010001),(010001100),(001100010) }. Find the distinct left cosets of H in G, write out their elements, partition G into left cosets of H, and give [G:H]. Find the distinct right cosets of H in G, write out their elements, and partition G into right cosets of H.arrow_forward5. For any subgroup of the group , let denote the product as defined in Definition 4.10. Prove that corollary 4.19:arrow_forward32. Let be a fixed element of the group . According to Exercise 20 of section 3.5, the mapping defined by is an automorphism of . Each of these automorphism is called an inner automorphism of . Prove that the set forms a normal subgroup of the group of all automorphism of . Exercise 20 of Section 3.5 20. For each in the group , define a mapping by . Prove that is an automorphism of .arrow_forward
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,