The elements of the multiplicative group
A permutation matrix is a matrix that can be obtained from an identity matrix
by interchanging the rows one or more times (that is, by permuting the rows). For
the permutation matrices are
and the five matrices.
(Sec.
Given that
is a group of order
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Elements Of Modern Algebra
- Prove or disprove that the set of all diagonal matrices in Mn() forms a group with respect to addition.arrow_forward15. Repeat Exercise with, the multiplicative group of matrices in Exercise of Section. 14. Let be the multiplicative group of matrices in Exercise of Section, let under multiplication, and define by a. Assume that is an epimorphism, and find the elements of. b. Write out the distinct elements of. c. Let be the isomorphism described in the proof of Theorem, and write out the values of.arrow_forwardExercises 1. Express each permutation as a product of disjoint cycles and find the orbits of each permutation. a. b. c. d. e. f. g. h.arrow_forward
- 38. Let be the set of all matrices in that have the form with all three numbers , , and nonzero. Prove or disprove that is a group with respect to multiplication.arrow_forward35. A permutation matrix is a matrix that can be obtained from an identity matrix by interchanging the rows one or more times (that is, by permuting the rows). For the permutation matrices are and the five matrices. (Sec. , Sec. , Sec. ) Given that is a group of order with respect to matrix multiplication, write out a multiplication table for . Sec. 22. Find the center for each of the following groups . c. in Exercise 35 of section 3.1. 32. Find the centralizer for each element in each of the following groups. c. in Exercise 35 of section 3.1 Sec. 5. The elements of the multiplicative group of permutation matrices are given in Exercise of section. Find the order of each element of the group. Sec. 6. Let be the group of permutations matrices as given in Exercise of Section .arrow_forwardTrue or False Label each of the following statements as either true or false. 6. Every permutation can be expressed as a product of disjoint cycles.arrow_forward
- Write out the addition and multiplication tables for 5.arrow_forwardShow that the matrix below does not have an LU factorization. A=0110arrow_forwardFind the order of each permutation in Exercise 1. Express each permutation as a product of disjoint cycles and find the orbits of each permutation. a. [ 1234545312 ] b. [ 1234513254 ] c. [ 1234541352 ] d. [ 1234535241 ] e. [ 12345673456127 ] f. [ 12345675137264 ] g. [ 1234513452 ][ 1234532415 ] h. [ 1234523415 ][ 1234513542 ]arrow_forward
- Find two groups of order 6 that are not isomorphic.arrow_forwardExercises 7. Express each permutation in Exercise as a product of transpositions. 1. Express each permutation as a product of disjoint cycles and find the orbits of each permutation. a. b. c. d. e. f. g. h.arrow_forward12. Find all homomorphic images of each group in Exercise of Section. 18. Let be the group of units as described in Exercise. For each value of, write out the elements of and construct a multiplication table for . a. b. c. d.arrow_forward
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning