List all cyclic subgroups of the group
Example 3.
We shall take
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Elements Of Modern Algebra
- Exercises 3. Find the order of each element of the group in Example of section. Example 3. We shall take and obtain an explicit example of . In order to define an element of , we need to specify , , and . There are three possible choices for . Since is to be bijective, there are two choices for after has been designated, and then only one choice for . Hence there are different mappings in .arrow_forward9. Find all homomorphic images of the octic group.arrow_forwardIf G is a cyclic group, prove that the equation x2=e has at most two distinct solutions in G.arrow_forward
- 27. a. Show that a cyclic group of order has a cyclic group of order as a homomorphic image. b. Show that a cyclic group of order has a cyclic group of order as a homomorphic image.arrow_forwardLet H and K be subgroups of a group G and K a subgroup of H. If the order of G is 24 and the order of K is 3, what are all the possible orders of H?arrow_forwardLet A={ a,b,c }. Prove or disprove that P(A) is a group with respect to the operation of union. (Sec. 1.1,7c)arrow_forward
- Find subgroups H and K of the group S(A) in example 3 of section 3.1 such that HK is not a subgroup of S(A). From Example 3 of section 3.1: A=1,2,3 and S(A) is a set of all permutations defined on A.arrow_forward9. Suppose that and are subgroups of the abelian group such that . Prove that .arrow_forwardProve part c of Theorem 3.4. Theorem 3.4: Properties of Group Elements Let G be a group with respect to a binary operation that is written as multiplication. The identity element e in G is unique. For each xG, the inverse x1 in G is unique. For each xG,(x1)1=x. Reverse order law: For any x and y in G, (xy)1=y1x1. Cancellation laws: If a,x, and y are in G, then either of the equations ax=ay or xa=ya implies that x=y.arrow_forward
- Exercises In Section 3.3, the centralizer of an element a in the group G was shown to be the subgroup given by Ca=xGax=xa. Use the multiplication table constructed in Exercise 20 to find the centralizer Ca for each element a of the octic group D4. Construct a multiplication table for the octic group D4 described in Example 12 of this section.arrow_forwardFind all subgroups of the octic group D4.arrow_forward12. Find all homomorphic images of each group in Exercise of Section. 18. Let be the group of units as described in Exercise. For each value of, write out the elements of and construct a multiplication table for . a. b. c. d.arrow_forward
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning