Elements Of Modern Algebra
8th Edition
ISBN: 9781285463230
Author: Gilbert, Linda, Jimmie
Publisher: Cengage Learning,
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3.4, Problem 8E
Let
a.
b.
c.
d.
e.
f.
g.
h.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Compare the interest earned from #1 (where simple interest was used) to #5 (where compound interest was used). The principal, annual interest rate, and time were all the same; the only difference was that for #5, interest was compounded quarterly. Does the difference in interest earned make sense? Select one of the following statements. a. No, because more money should have been earned through simple interest than compound interest. b. Yes, because more money was earned through simple interest. For simple interest you earn interest on interest, not just on the amount of principal. c. No, because more money was earned through simple interest. For simple interest you earn interest on interest, not just on the amount of principal. d. Yes, because more money was earned when compounded quarterly. For compound interest you earn interest on interest, not just on the amount of principal.
Compare and contrast the simple and compound interest formulas. Which one of the following statements is correct? a. Simple interest and compound interest formulas both yield principal plus interest, so you must subtract the principal to get the amount of interest. b. Simple interest formula yields principal plus interest, so you must subtract the principal to get the amount of interest; Compound interest formula yields only interest, which you must add to the principal to get the final amount. c. Simple interest formula yields only interest, which you must add to the principal to get the final amount; Compound interest formula yields principal plus interest, so you must subtract the principal to get the amount of interest. d. Simple interest and compound interest formulas both yield only interest, which you must add to the principal to get the final amount.
Sara would like to go on a vacation in 5 years and she expects her total costs to be $3000. If she invests $2500 into a savings account for those 5 years at 8% interest, compounding semi-annually, how much money will she have? Round your answer to the nearest cent. Show you work. Will she be able to go on vacation? Why or why not?
Chapter 3 Solutions
Elements Of Modern Algebra
Ch. 3.1 - True or False
Label each of the following...Ch. 3.1 - True or False
Label each of the following...Ch. 3.1 - Label each of the following statements as either...Ch. 3.1 - True or False
Label each of the following...Ch. 3.1 - Prob. 5TFECh. 3.1 - True or False
Label each of the following...Ch. 3.1 - Label each of the following statements as either...Ch. 3.1 - Prob. 8TFECh. 3.1 - True or False
Label each of the following...Ch. 3.1 - True or False
Label each of the following...
Ch. 3.1 - True or False
Label each of the following...Ch. 3.1 - Prob. 1ECh. 3.1 - Prob. 2ECh. 3.1 - Prob. 3ECh. 3.1 - Prob. 4ECh. 3.1 - In Exercises 114, decide whether each of the given...Ch. 3.1 - Exercises
In Exercises, decide whether each of...Ch. 3.1 - Exercises
In Exercises, decide whether each of...Ch. 3.1 - Exercises
In Exercises, decide whether each of...Ch. 3.1 - Exercises
In Exercises, decide whether each of...Ch. 3.1 - In Exercises 114, decide whether each of the given...Ch. 3.1 - Prob. 11ECh. 3.1 - Prob. 12ECh. 3.1 - Prob. 13ECh. 3.1 - In Exercises 114, decide whether each of the given...Ch. 3.1 - In Exercises and, the given table defines an...Ch. 3.1 - In Exercises 15 and 16, the given table defines an...Ch. 3.1 - In Exercises, let the binary operation be defined...Ch. 3.1 - In Exercises, let the binary operation be defined...Ch. 3.1 - In Exercises, let the binary operation be defined...Ch. 3.1 - In Exercises 1724, let the binary operation be...Ch. 3.1 - In Exercises 1724, let the binary operation be...Ch. 3.1 - In Exercises, let the binary operation be defined...Ch. 3.1 - In Exercises, let the binary operation be defined...Ch. 3.1 - In Exercises, let the binary operation be defined...Ch. 3.1 - Prob. 25ECh. 3.1 - Prob. 26ECh. 3.1 - Prob. 27ECh. 3.1 - Prob. 28ECh. 3.1 - Prob. 29ECh. 3.1 - Prob. 30ECh. 3.1 - Prob. 31ECh. 3.1 - Prob. 32ECh. 3.1 - a. Let G={ [ a ][ a ][ 0 ] }n. Show that G is a...Ch. 3.1 - 34. Let be the set of eight elements with...Ch. 3.1 - 35. A permutation matrix is a matrix that can be...Ch. 3.1 - Consider the matrices R=[ 0110 ] H=[ 1001 ] V=[...Ch. 3.1 - Prove or disprove that the set of all diagonal...Ch. 3.1 - 38. Let be the set of all matrices in that have...Ch. 3.1 - 39. Let be the set of all matrices in that have...Ch. 3.1 - 40. Prove or disprove that the set in Exercise ...Ch. 3.1 - 41. Prove or disprove that the set in Exercise ...Ch. 3.1 - 42. For an arbitrary set , the power set was...Ch. 3.1 - Write out the elements of P(A) for the set A={...Ch. 3.1 - Let A={ a,b,c }. Prove or disprove that P(A) is a...Ch. 3.1 - 45. Let . Prove or disprove that is a group with...Ch. 3.1 - In Example 3, the group S(A) is nonabelian where...Ch. 3.1 - 47. Find the additive inverse of in the given...Ch. 3.1 - Prob. 48ECh. 3.1 - 49. Find the multiplicative inverse of in the...Ch. 3.1 - 50. Find the multiplicative inverse of in the...Ch. 3.1 - Prove that the Cartesian product 24 is an abelian...Ch. 3.1 - Let G1 and G2 be groups with respect to addition....Ch. 3.2 - True or False
Label each of the following...Ch. 3.2 - True or False
Label each of the following...Ch. 3.2 - Label each of the following statements as either...Ch. 3.2 - True or False Label each of the following...Ch. 3.2 - Label each of the following statements as either...Ch. 3.2 - Label each of the following statements as either...Ch. 3.2 - 1.Prove part of Theorem .
Theorem 3.4: Properties...Ch. 3.2 - Prove part c of Theorem 3.4. Theorem 3.4:...Ch. 3.2 - Prove part e of Theorem 3.4. Theorem 3.4:...Ch. 3.2 - An element x in a multiplicative group G is called...Ch. 3.2 - 5. In Example 3 of Section 3.1, find elements and...Ch. 3.2 - 6. In Example 3 of section 3.1, find elements and ...Ch. 3.2 - 7. In Example 3 of Section 3.1, find elements and...Ch. 3.2 - In Example 3 of Section 3.1, find all elements a...Ch. 3.2 - 9. Find all elements in each of the following...Ch. 3.2 - 10. Prove that in Theorem , the solutions to the...Ch. 3.2 - Let G be a group. Prove that the relation R on G,...Ch. 3.2 - Suppose that G is a finite group. Prove that each...Ch. 3.2 - In Exercises and , part of the multiplication...Ch. 3.2 - In Exercises 13 and 14, part of the multiplication...Ch. 3.2 - 15. Prove that if for all in the group , then ...Ch. 3.2 - Suppose ab=ca implies b=c for all elements a,b,...Ch. 3.2 - 17. Let and be elements of a group. Prove that...Ch. 3.2 - Let a and b be elements of a group G. Prove that G...Ch. 3.2 - Use mathematical induction to prove that if a is...Ch. 3.2 - 20. Let and be elements of a group . Use...Ch. 3.2 - Let a,b,c, and d be elements of a group G. Find an...Ch. 3.2 - Use mathematical induction to prove that if...Ch. 3.2 - 23. Let be a group that has even order. Prove that...Ch. 3.2 - 24. Prove or disprove that every group of order is...Ch. 3.2 - 25. Prove or disprove that every group of order is...Ch. 3.2 - 26. Suppose is a finite set with distinct...Ch. 3.2 - 27. Suppose that is a nonempty set that is closed...Ch. 3.2 - Reword Definition 3.6 for a group with respect to...Ch. 3.2 - 29. State and prove Theorem for an additive...Ch. 3.2 - 30. Prove statement of Theorem : for all integers...Ch. 3.2 - 31. Prove statement of Theorem : for all integers...Ch. 3.2 - Prove statement d of Theorem 3.9: If G is abelian,...Ch. 3.3 - Label each of the following statements as either...Ch. 3.3 - True or false
Label each of the following...Ch. 3.3 - True or false Label each of the following...Ch. 3.3 - True or false
Label each of the following...Ch. 3.3 - True or false
Label each of the following...Ch. 3.3 - True or false
Label each of the following...Ch. 3.3 - Prob. 7TFECh. 3.3 - Prob. 8TFECh. 3.3 - Prob. 9TFECh. 3.3 - Prob. 10TFECh. 3.3 - Prob. 11TFECh. 3.3 - Prob. 1ECh. 3.3 - Decide whether each of the following sets is a...Ch. 3.3 - 3. Consider the group under addition. List all...Ch. 3.3 - 4. List all the elements of the subgroupin the...Ch. 3.3 - 5. Exercise of section shows that is a group...Ch. 3.3 - 6. Let be , the general linear group of order...Ch. 3.3 - 7. Let be the group under addition. List the...Ch. 3.3 - Find a subset of Z that is closed under addition...Ch. 3.3 - 9. Let be a group of all nonzero real numbers...Ch. 3.3 - 10. Let be an integer, and let be a fixed...Ch. 3.3 - 11. Let be a subgroup of, let be a fixed element...Ch. 3.3 - Prove or disprove that H={ hGh1=h } is a subgroup...Ch. 3.3 - 13. Let be an abelian group with respect to...Ch. 3.3 - Prove that each of the following subsets H of...Ch. 3.3 - 15. Prove that each of the following subsets of ...Ch. 3.3 - Prove that each of the following subsets H of...Ch. 3.3 - 17. Consider the set of matrices, where
...Ch. 3.3 - Prove that SL(2,R)={ [ abcd ]|adbc=1 } is a...Ch. 3.3 - 19. Prove that each of the following subsets of ...Ch. 3.3 - For each of the following matrices A in SL(2,R),...Ch. 3.3 - 21. Let
Be the special linear group of order ...Ch. 3.3 - 22. Find the center for each of the following...Ch. 3.3 - 23. Let be the equivalence relation on defined...Ch. 3.3 - 24. Let be a group and its center. Prove or...Ch. 3.3 - Let G be a group and Z(G) its center. Prove or...Ch. 3.3 - Let A be a given nonempty set. As noted in Example...Ch. 3.3 - (See Exercise 26) Let A be an infinite set, and...Ch. 3.3 - 28. For each, define by for.
a. Show that is an...Ch. 3.3 - Let G be an abelian group. For a fixed positive...Ch. 3.3 - For fixed integers a and b, let S={ ax+byxandy }....Ch. 3.3 - 31. a. Prove Theorem : The center of a group is...Ch. 3.3 - Find the centralizer for each element a in each of...Ch. 3.3 - Prove that Ca=Ca1, where Ca is the centralizer of...Ch. 3.3 - 34. Suppose that and are subgroups of the group...Ch. 3.3 - Prob. 35ECh. 3.3 - Prob. 36ECh. 3.3 - Prob. 37ECh. 3.3 - Find subgroups H and K of the group S(A) in...Ch. 3.3 - 39. Assume that and are subgroups of the abelian...Ch. 3.3 - 40. Find subgroups and of the group in example ...Ch. 3.3 - 41. Let be a cyclic group, . Prove that is...Ch. 3.3 - Reword Definition 3.17 for an additive group G....Ch. 3.3 - 43. Suppose that is a nonempty subset of a group ....Ch. 3.3 - 44. Let be a subgroup of a group .For, define the...Ch. 3.3 - Assume that G is a finite group, and let H be a...Ch. 3.4 - Label each of the following statements as either...Ch. 3.4 - Label each of the following statements as either...Ch. 3.4 - True or False
Label each of the following...Ch. 3.4 - True or False
Label each of the following...Ch. 3.4 - Label each of the following statements as either...Ch. 3.4 - Label each of the following statements as either...Ch. 3.4 - True or False
Label each of the following...Ch. 3.4 - True or False
Label each of the following...Ch. 3.4 - Label each of the following statements as either...Ch. 3.4 - True or False
Label each of the following...Ch. 3.4 -
Exercises
1. List all cyclic subgroups of the...Ch. 3.4 - Let G=1,i,j,k be the quaternion group. List all...Ch. 3.4 - Exercises
3. Find the order of each element of the...Ch. 3.4 - Find the order of each element of the group G in...Ch. 3.4 - The elements of the multiplicative group G of 33...Ch. 3.4 - Exercises
6. In the multiplicative group, find the...Ch. 3.4 - Exercises
7. Let be an element of order in a...Ch. 3.4 - Exercises
8. Let be an element of order in a...Ch. 3.4 - Exercises
9. For each of the following values of,...Ch. 3.4 - Exercises
10. For each of the following values of,...Ch. 3.4 - Exercises
11. According to Exercise of section,...Ch. 3.4 - For each of the following values of n, find all...Ch. 3.4 - Exercises
13. For each of the following values of,...Ch. 3.4 - Exercises
14. Prove that the set
is cyclic...Ch. 3.4 - Exercises
15. a. Use trigonometric identities and...Ch. 3.4 - For an integer n1, let G=Un, the group of units in...Ch. 3.4 - let Un be the group of units as described in...Ch. 3.4 - Prob. 18ECh. 3.4 - Prob. 19ECh. 3.4 - Consider the group U9 of all units in 9. Given...Ch. 3.4 - Exercises
21. Suppose is a cyclic group of order....Ch. 3.4 - Exercises
22. List all the distinct subgroups of...Ch. 3.4 - Let G= a be a cyclic group of order 24. List all...Ch. 3.4 - Let G= a be a cyclic group of order 35. List all...Ch. 3.4 - Describe all subgroups of the group under...Ch. 3.4 - Prob. 26ECh. 3.4 - Prob. 27ECh. 3.4 - Prob. 28ECh. 3.4 - Let a and b be elements of a finite group G. Prove...Ch. 3.4 - Prob. 30ECh. 3.4 - Exercises
31. Let be a group with its...Ch. 3.4 - If a is an element of order m in a group G and...Ch. 3.4 - If G is a cyclic group, prove that the equation...Ch. 3.4 - Prob. 34ECh. 3.4 - Prob. 35ECh. 3.4 - Prob. 36ECh. 3.4 - Prob. 37ECh. 3.4 - Exercises
38. Assume that is a cyclic group of...Ch. 3.4 - Prob. 39ECh. 3.4 - Prob. 40ECh. 3.4 - Let G be an abelian group. Prove that the set of...Ch. 3.4 - Prob. 42ECh. 3.5 - Label each of the following statements as either...Ch. 3.5 - True or False
Label each of the following...Ch. 3.5 - Label each of the following statements as either...Ch. 3.5 - True or False
Label each of the following...Ch. 3.5 - Label each of the following statements as either...Ch. 3.5 - True or False
Label each of the following...Ch. 3.5 - Label each of the following statements as either...Ch. 3.5 - Prob. 8TFECh. 3.5 - Prove that if is an isomorphism from the group G...Ch. 3.5 - Let G1, G2, and G3 be groups. Prove that if 1 is...Ch. 3.5 - Exercises
3. Find an isomorphism from the additive...Ch. 3.5 - Let G=1,i,1,i under multiplication, and let G=4=[...Ch. 3.5 - Prob. 5ECh. 3.5 - Exercises
6. Find an isomorphism from the additive...Ch. 3.5 - Find an isomorphism from the additive group to...Ch. 3.5 - Exercises
8. Find an isomorphism from the group ...Ch. 3.5 - Exercises
9. Find an isomorphism from the...Ch. 3.5 - Exercises
10. Find an isomorphism from the...Ch. 3.5 - The following set of matrices [ 1001 ], [ 1001 ],...Ch. 3.5 - Exercises
12. Prove that the additive group of...Ch. 3.5 - Consider the groups given in Exercise 12. Find an...Ch. 3.5 - Consider the additive group of real numbers....Ch. 3.5 - Consider the additive group of real numbers....Ch. 3.5 - Exercises
16. Assume that the nonzero complex...Ch. 3.5 - Prob. 17ECh. 3.5 - Exercises
18. Suppose and let be defined by ....Ch. 3.5 - Prob. 19ECh. 3.5 - For each a in the group G, define a mapping ta:GG...Ch. 3.5 - For a fixed group G, prove that the set of all...Ch. 3.5 - Exercises
22. Let be a finite cyclic group of...Ch. 3.5 - Exercises
23. Assume is a (not necessarily...Ch. 3.5 - Prob. 24ECh. 3.5 - Prob. 25ECh. 3.5 - Prob. 26ECh. 3.5 - Exercises
27. Consider the additive groups , , and...Ch. 3.5 - Prob. 28ECh. 3.5 - Prob. 29ECh. 3.5 - Exercises
30. For an arbitrary positive integer,...Ch. 3.5 - Prob. 31ECh. 3.5 - Prob. 32ECh. 3.5 - Suppose that G and H are isomorphic groups. Prove...Ch. 3.5 - Prob. 34ECh. 3.5 - Exercises
35. Prove that any two groups of order ...Ch. 3.5 - Prob. 36ECh. 3.5 - Prob. 37ECh. 3.5 - Prob. 38ECh. 3.5 - Suppose that is an isomorphism from the group G...Ch. 3.6 - Label each of the following statements as either...Ch. 3.6 - True or False
Label each of the following...Ch. 3.6 - Label each of the following statements as either...Ch. 3.6 - Label each of the following statements as either...Ch. 3.6 - True or False
Label each of the following...Ch. 3.6 - True or False
Label each of the following...Ch. 3.6 - Label each of the following statements as either...Ch. 3.6 - True or False
Label each of the following...Ch. 3.6 - Label each of the following statements as either...Ch. 3.6 - True or False
Label each of the following...Ch. 3.6 - Each of the following rules determines a mapping...Ch. 3.6 - Each of the following rules determines a mapping ...Ch. 3.6 - 3. Consider the additive groups of real numbers...Ch. 3.6 - Consider the additive group and the...Ch. 3.6 - 5. Consider the additive group and define...Ch. 3.6 - Consider the additive groups 12 and 6 and define...Ch. 3.6 - Consider the additive groups 8 and 4 and define...Ch. 3.6 - 8. Consider the additive groups and . Define by...Ch. 3.6 - 9. Let be the additive group of matrices over...Ch. 3.6 - Rework exercise 9 with G=GL(2,), the general...Ch. 3.6 - 11. Let be , and let be the group of nonzero real...Ch. 3.6 - Consider the additive group of real numbers. Let ...Ch. 3.6 - Prob. 13ECh. 3.6 - 14. Let be a homomorphism from the group to the...Ch. 3.6 - 15. Prove that on a given collection of groups,...Ch. 3.6 - 16. Suppose that and are groups. If is a...Ch. 3.6 - 17. Find two groups and such that is a...Ch. 3.6 - Suppose that is an epimorphism from the group G...Ch. 3.6 - 19. Let be a homomorphism from a group to a group...Ch. 3.6 - 20. If is an abelian group and the group is a...Ch. 3.6 - 21. Let be a fixed element of the multiplicative...Ch. 3.6 - 22. With as in Exercise , show that , and describe...Ch. 3.6 - Assume that is a homomorphism from the group G to...Ch. 3.6 - 24. Assume that the group is a homomorphic image...Ch. 3.6 - Let be a homomorphism from the group G to the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- If $8000 is deposited into an account earning simple interest at an annual interest rate of 4% for 10 years, howmuch interest was earned? Show you work.arrow_forward10-2 Let A = 02-4 and b = 4 Denote the columns of A by a₁, a2, a3, and let W = Span {a1, a2, a̸3}. -4 6 5 - 35 a. Is b in {a1, a2, a3}? How many vectors are in {a₁, a₂, a3}? b. Is b in W? How many vectors are in W? c. Show that a2 is in W. [Hint: Row operations are unnecessary.] a. Is b in {a₁, a2, a3}? Select the correct choice below and, if necessary, fill in the answer box(es) to complete your choice. ○ A. No, b is not in {a₁, a2, 3} since it cannot be generated by a linear combination of a₁, a2, and a3. B. No, b is not in (a1, a2, a3} since b is not equal to a₁, a2, or a3. C. Yes, b is in (a1, a2, a3} since b = a (Type a whole number.) D. Yes, b is in (a1, a2, 3} since, although b is not equal to a₁, a2, or a3, it can be expressed as a linear combination of them. In particular, b = + + ☐ az. (Simplify your answers.)arrow_forward14 14 4. The graph shows the printing rate of Printer A. Printer B can print at a rate of 25 pages per minute. How does the printing rate for Printer B compare to the printing rate for Printer A? The printing rate for Printer B is than the rate for Printer A because the rate of 25 pages per minute is than the rate of for Printer A. pages per minute RIJOUT 40 fy Printer Rat Number of Pages 8N WA 10 30 20 Printer A 0 0 246 Time (min) Xarrow_forward
- OR 16 f(x) = Ef 16 χ по x²-2 410 | y = (x+2) + 4 Y-INT: y = 0 X-INT: X=0 VA: x=2 OA: y=x+2 0 X-INT: X=-2 X-INT: y = 2 VA 0 2 whole. 2-2 4 y - (x+2) = 27-270 + xxx> 2 क् above OA (x+2) OA x-2/x²+0x+0 2 x-2x 2x+O 2x-4 4 X<-1000 4/4/2<0 below Of y VA X=2 X-2 OA y=x+2 -2 2 (0,0) 2 χarrow_forwardI need help solving the equation 3x+5=8arrow_forwardWhat is the domain, range, increasing intervals (theres 3), decreasing intervals, roots, y-intercepts, end behavior (approaches four times), leading coffiencent status (is it negative, positivie?) the degress status (zero, undifined etc ), the absolute max, is there a absolute minimum, relative minimum, relative maximum, the root is that has a multiplicity of 2, the multiplicity of 3.arrow_forward
- What is the vertex, axis of symmerty, all of the solutions, all of the end behaviors, the increasing interval, the decreasing interval, describe all of the transformations that have occurred EXAMPLE Vertical shrink/compression (wider). or Vertical translation down, the domain and range of this graph EXAMPLE Domain: x ≤ -1 Range: y ≥ -4.arrow_forward4. Select all of the solutions for x²+x - 12 = 0? A. -12 B. -4 C. -3 D. 3 E 4 F 12 4 of 10arrow_forward2. Select all of the polynomials with the degree of 7. A. h(x) = (4x + 2)³(x − 7)(3x + 1)4 B h(x) = (x + 7)³(2x + 1)^(6x − 5)² ☐ Ch(x)=(3x² + 9)(x + 4)(8x + 2)ª h(x) = (x + 6)²(9x + 2) (x − 3) h(x)=(-x-7)² (x + 8)²(7x + 4)³ Scroll down to see more 2 of 10arrow_forward
- 1. If all of the zeros for a polynomial are included in the graph, which polynomial could the graph represent? 100 -6 -2 0 2 100 200arrow_forward3. Select the polynomial that matches the description given: Zero at 4 with multiplicity 3 Zero at −1 with multiplicity 2 Zero at -10 with multiplicity 1 Zero at 5 with multiplicity 5 ○ A. P(x) = (x − 4)³(x + 1)²(x + 10)(x — 5)³ B - P(x) = (x + 4)³(x − 1)²(x − 10)(x + 5)³ ○ ° P(x) = (1 − 3)'(x + 2)(x + 1)"'" (x — 5)³ 51 P(r) = (x-4)³(x − 1)(x + 10)(x − 5 3 of 10arrow_forwardMatch the equation, graph, and description of transformation. Horizontal translation 1 unit right; vertical translation 1 unit up; vertical shrink of 1/2; reflection across the x axis Horizontal translation 1 unit left; vertical translation 1 unit down; vertical stretch of 2 Horizontal translation 2 units right; reflection across the x-axis Vertical translation 1 unit up; vertical stretch of 2; reflection across the x-axis Reflection across the x - axis; vertical translation 2 units down Horizontal translation 2 units left Horizontal translation 2 units right Vertical translation 1 unit down; vertical shrink of 1/2; reflection across the x-axis Vertical translation 2 units down Horizontal translation 1 unit left; vertical translation 2 units up; vertical stretch of 2; reflection across the x - axis f(x) = - =-½ ½ (x − 1)²+1 f(x) = x²-2 f(x) = -2(x+1)²+2 f(x)=2(x+1)²-1 f(x)=-(x-2)² f(x)=(x-2)² f(x) = f(x) = -2x²+1 f(x) = -x²-2 f(x) = (x+2)²arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Orthogonality in Inner Product Spaces; Author: Study Force;https://www.youtube.com/watch?v=RzIx_rRo9m0;License: Standard YouTube License, CC-BY
Abstract Algebra: The definition of a Group; Author: Socratica;https://www.youtube.com/watch?v=QudbrUcVPxk;License: Standard Youtube License