According to Exercise
a.
b.
c.
d.
e.
f.
a. Let
b. Construct a multiplication table for the group
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Elements Of Modern Algebra
- If a is an element of order m in a group G and ak=e, prove that m divides k.arrow_forwardFind the order of each of the following elements in the multiplicative group of units . for for for forarrow_forwardExercises 13. For each of the following values of, find all subgroups of the group described in Exercise, addition and state their order. a. b. c. d. e. f.arrow_forward
- Let a,b,c, and d be elements of a group G. Find an expression for (abcd)1 in terms of a1,b1,c1, and d1.arrow_forward9. Find all homomorphic images of the octic group.arrow_forwardIn Exercises 3 and 4, let G be the octic group D4=e,,2,3,,,, in Example 12 of section 4.1, with its multiplication table requested in Exercise 20 of the same section. Let H be the subgroup e, of the octic group D4. Find the distinct left cosets of H in D4, write out their elements, partition D4 into left cosets of H, and give [D4:H]. Find the distinct right cosets of H in D4, write out their elements, and partition D4 into right cosets of H. Example 12 Using the notational convention described in the preceding paragraph, we shall write out the dihedral group D4 of rigid motions of a square The elements of the group D4 are as follows: 1. the identity mapping e=(1) 2. the counterclockwise rotation =(1,2,3,4) through 900 about the center O 3. the counterclockwise rotation 2=(1,3)(2,4) through 1800 about the center O 4. the counterclockwise rotation 3=(1,4,3,2) through 2700 about the center O 5. the reflection =(1,4)(2,3) about the horizontal line h 6. the reflection =(2,4) about the diagonal d1 7. the reflection =(1,2)(3,4) about the vertical line v 8. the reflection =(1,3) about the diagonal d2. The dihedral group D4=e,,2,3,,,, of rigid motions of the square is also known as the octic group. The multiplication table for D4 is requested in Exercise 20 of this section.arrow_forward
- In Exercises 3 and 4, let be the octic group in Example 12 of section 4.1, with its multiplication table requested in Exercise 20 of the same section. Let be the subgroup of the octic group . Find the distinct left cosets of in , write out their elements, partition into left cosets of , and give . Find the distinct right cosets of in , write out their elements, and partition into right cosets of . Example 12 Using the notational convention described in the preceding paragraph, we shall write out the dihedral group of rigid motions of a square The elements of the group are as follows: 1. the identity mapping 2. the counterclockwise rotation through about the center 3. the counterclockwise rotation through about the center 4. the counterclockwise rotation through about the center 5. the reflection about the horizontal line 6. the reflection about the diagonal 7. the reflection about the vertical line 8. the reflection about the diagonal . The dihedral group of rigid motions of the square is also known as the octic group. The multiplication table for is requested in Exercise 20 of this section.arrow_forwardProve that Ca=Ca1, where Ca is the centralizer of a in the group G.arrow_forwardConstruct a multiplication table for the group D5 of rigid motions of a regular pentagon with vertices 1,2,3,4,5.arrow_forward
- 9. Find all elements in each of the following groups such that . under addition. under multiplication.arrow_forward(See Exercise 31.) Suppose G is a group that is transitive on 1,2,...,n, and let ki be the subgroup that leaves each of the elements 1,2,...,i fixed: Ki=gGg(k)=kfork=1,2,...,i For i=1,2,...,n. Prove that G=Sn if and only if HiHj for all pairs i,j such that ij and in1. A subgroup H of the group Sn is called transitive on B=1,2,....,n if for each pair i,j of elements of B there exists an element hH such that h(i)=j. Suppose G is a group that is transitive on 1,2,....,n, and let Hi be the subgroup of G that leaves i fixed: Hi=gGg(i)=i For i=1,2,...,n. Prove that G=nHi.arrow_forwardThe alternating group A4 on 4 elements is the same as the group D4 of symmetries for a square. That is. A4=D4.arrow_forward
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning