a)
Interpretation:
Show the mechanism of the formation of dicyclopentadiene from cyclopentadiene, draw the representative unit of the
Concept introduction:
In this process, the addition
In this process, an initiator is added to the reaction mixture. This initiator gets added to the carbon-carbon double bond and yields a reactive monomer (intermediate). This reactive intermediate reacts with the monomer and this process keeps on repeating to give rise to the final polymeric product.
The formation of PDCPD is taking place by ROMP (ring opening metathesis polymerization), an olefin metathesis reaction can be stated as the reaction between two molecules (
The catalyst used for olefin metathesis polymerization is Grubb’s catalyst (it contain a carbon-metal double bond and have a genral structure as M=CH-R. The function of Grubb’s catalyst is to react reversibly with an alkene to form a four membered cyclic compound knowa as metallacycle. Here, “M” is Ru i.e. ruthenium.
Metallacycle opens up in the next step to give rise to different alkene and a different catalyst.
b)
Interpretation:
Show the mechanism of the formation of dicyclopentadiene from cyclopentadiene, draw the representative unit of the polymer containing three monomer units and draw the structure of PDCPD.
Concept introduction:
In this process, the addition polymerization takes place. Addition polymerization is also known as chain growth polymerization.
In this process, an initiator is added to the reaction mixture. This initiator gets added to the carbon-carbon double bond and yields a reactive monomer (intermediate). This reactive intermediate reacts with the monomer and this process keeps on repeating to give rise to the final polymeric product.
The formation of PDCPD is taking place by ROMP (ring opening metathesis polymerization), an olefin metathesis reaction can be stated as the reaction between two molecules (alkenes) by exchanging their substituents on their double bonds.
The catalyst used for olefin metathesis polymerization is Grubb’s catalyst (it contain a carbon-metal double bond and have a genral structure as M=CH-R. The function of Grubb’s catalyst is to react reversibly with an alkene to form a four membered cyclic compound knowa as metallacycle. Here, “M” is Ru i.e. ruthenium.
Metallacycle opens up in the next step to give rise to different alkene and a different catalyst.
c)
Interpretation:
Show the mechanism of the formation of dicyclopentadiene from cyclopentadiene, draw the representative unit of the polymer containing three monomer units and draw the structure of PDCPD.
Concept introduction:
In this process, the addition polymerization takes place. Addition polymerization is also known as chain growth polymerization.
In this process, an initiator is added to the reaction mixture. This initiator gets added to the carbon-carbon double bond and yields a reactive monomer (intermediate). This reactive intermediate reacts with the monomer and this process keeps on repeating to give rise to the final polymeric product.
The formation of PDCPD is taking place by ROMP (ring opening metathesis polymerization), an olefin metathesis reaction can be stated as the reaction between two molecules (alkenes) by exchanging their substituents on their double bonds.
The catalyst used for olefin metathesis polymerization is Grubb’s catalyst (it contain a carbon-metal double bond and have a genral structure as M=CH-R. The function of Grubb’s catalyst is to react reversibly with an alkene to form a four membered cyclic compound knowa as metallacycle. Here, “M” is Ru i.e. ruthenium.
Metallacycle opens up in the next step to give rise to different alkene and a different catalyst.
Want to see the full answer?
Check out a sample textbook solutionChapter 31 Solutions
OWLv2 with Student Solutions Manual eBook, 4 terms (24 months) Printed Access Card for McMurry's Organic Chemistry, 9th
- CH₂O and 22 NMR Solvent: CDCl3 IR Solvent: neat 4000 3000 2000 1500 1000 15 [ اند 6,5 9.8 3.0 7.0 6.0 5.0 4.8 3.0 2.0 1.0 9.8 200 100arrow_forwardprotons. Calculate the mass (in grams) of H3AsO4 (MW=141.9416) needed to produce 3.125 x 1026arrow_forwardPlease provide with answer, steps and explanation of ideas to solve.arrow_forward
- Please provide with answer, steps and explanation of ideas to solve.arrow_forwardPlease provide with answer, steps and explanation of ideas to solve.arrow_forwardUsing what we have learned in CHEM 2310 and up through class on 1/31, propose a series of reaction steps to achieve the transformation below. Be sure to show all reagents and intermediates for full credit. You do not need to draw mechanism arrows, but you do need to include charges where appropriate. If you do not put your group name, you will get half credit at most. ? Brarrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningEBK A SMALL SCALE APPROACH TO ORGANIC LChemistryISBN:9781305446021Author:LampmanPublisher:CENGAGE LEARNING - CONSIGNMENT