College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 30, Problem 57GP
To determine
The amount of time before which the given sample of water was sunk below the surface of water.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Suppose you are working as a reactor operator in the world’s largest nuclear power station at Kashiwazaki-Kariwa Nuclear Power Plant, Japan. The first unit in this station began to operate in 1985.
Suppose the rate at which the nuclear power plant produces radioactive waste is proportional to the number of years it has been operating such that 500 pounds of waste is produced every year. Also, suppose that the waste decays exponentially at a rate of 5% per year.
At the beginning of 2011, The Fukushima Daiichi nuclear disaster caused sever damages in the units which released the radiation waste to the atmosphere. Therefore, all the units were closed in 2011 for safety inspection. This left japan completely without nuclear-produced electrical power. Finally, the unit began to operate at the beginning of 2019. As a reactor operator, you are asked to do the following:
a. Model the generation of the Kashiwazaki-Kariwa Nuclear Power Plant radioactive waste as a function of time.
b.…
The water is safe to drink if the number of cells falls below 10 cells/mL. It is 8 a.m. and you have 100,000 cells/mL with D being 15 minutes. You add the bleach to the tank. At what time can you release the water?
Log Nt = Log N0 – t/D. D is the time required for a log kill.
Help!
Chapter 30 Solutions
College Physics (10th Edition)
Ch. 30 - Prob. 1CQCh. 30 - Prob. 2CQCh. 30 - True or false? During one half-life, the mass of a...Ch. 30 - Changing the temperature of atoms affects their...Ch. 30 - Prob. 5CQCh. 30 - Prob. 6CQCh. 30 - Prob. 7CQCh. 30 - Prob. 8CQCh. 30 - Prob. 9CQCh. 30 - Prob. 10CQ
Ch. 30 - Prob. 11CQCh. 30 - Prob. 12CQCh. 30 - Prob. 3MCPCh. 30 - Prob. 4MCPCh. 30 - Prob. 5MCPCh. 30 - Prob. 6MCPCh. 30 - Prob. 7MCPCh. 30 - Prob. 8MCPCh. 30 - Prob. 9MCPCh. 30 - Prob. 10MCPCh. 30 - Prob. 11MCPCh. 30 - Prob. 12MCPCh. 30 - Prob. 1PCh. 30 - Prob. 2PCh. 30 - Prob. 3PCh. 30 - Prob. 4PCh. 30 - Prob. 5PCh. 30 - Prob. 6PCh. 30 - Prob. 7PCh. 30 - Prob. 8PCh. 30 - Prob. 9PCh. 30 - Prob. 10PCh. 30 - Prob. 11PCh. 30 - Prob. 12PCh. 30 - Prob. 13PCh. 30 - Prob. 14PCh. 30 - Calcium-47 is a emitter with a half-life of 4.5...Ch. 30 - Prob. 16PCh. 30 - Prob. 17PCh. 30 - Prob. 18PCh. 30 - Prob. 19PCh. 30 - Prob. 20PCh. 30 - Prob. 21PCh. 30 - Prob. 22PCh. 30 - Prob. 23PCh. 30 - Prob. 24PCh. 30 - Prob. 25PCh. 30 - Prob. 26PCh. 30 - Prob. 27PCh. 30 - Prob. 28PCh. 30 - Prob. 29PCh. 30 - Prob. 30PCh. 30 - Prob. 31PCh. 30 - Prob. 32PCh. 30 - Prob. 33PCh. 30 - Prob. 34PCh. 30 - Prob. 35PCh. 30 - Prob. 36PCh. 30 - Prob. 37PCh. 30 - Prob. 38PCh. 30 - Prob. 39PCh. 30 - Prob. 40PCh. 30 - Prob. 41PCh. 30 - Prob. 42PCh. 30 - Prob. 43PCh. 30 - Prob. 44PCh. 30 - Prob. 45PCh. 30 - Prob. 46PCh. 30 - Prob. 47PCh. 30 - Prob. 48PCh. 30 - Prob. 49PCh. 30 - The results of activity measurements on a...Ch. 30 - Prob. 51GPCh. 30 - Prob. 52GPCh. 30 - Prob. 53GPCh. 30 - Prob. 54GPCh. 30 - Prob. 55GPCh. 30 - Prob. 56GPCh. 30 - Prob. 57GPCh. 30 - Prob. 58GPCh. 30 - Prob. 59GPCh. 30 - The atomic mass of 2056Co is 55.934939 u, and the...Ch. 30 - Prob. 61GPCh. 30 - Prob. 62GPCh. 30 - Prob. 63GPCh. 30 - Prob. 64PPCh. 30 - Prob. 65PPCh. 30 - Prob. 66PPCh. 30 - Prob. 67PPCh. 30 - Prob. 68PPCh. 30 - Prob. 69PPCh. 30 - Prob. 70PPCh. 30 - Prob. 71PP
Knowledge Booster
Similar questions
- a) 40 b) 4 c) 4000 d) 400 e) 40,000 f) 0.4 millionarrow_forwardCarbon-14 is an isotope of carbon that is formed when radiation from the sun strikes ordinary carbon dioxide in the atmosphere. Plants such as trees, which get their carbon dioxide from the atmosphere, therefore contain a small amount of carbon-14. Once a particular part of a plant has been formed, no more new carbon 14 is taken in. The carbon 14 in that part of the plant decays slowly. Let P be the percent of carbon-14 remaining in a part of a tree that grew t years ago (so t years ago, there was 100 percent of the carbon-14 existing in that part of the tree). Write the particular equation expressing P in terms of t. You may assume that the half-life of carbon-14 is 5730 years. a.) A piece of wood some believe to have come from Noah's Ark has 47.93% of its carbon-14 remaining. The Great Flood was supposed to have occurred in 4004 B.C. Is this piece of wood old enough to have come from Noah's Ark? Justify your answer. b.)arrow_forwardA radioactive element has a half-life of 3 days. The initial amount of that element is 1024 grams. How many grams of that element are left 12 days later? Write down your answer as an integer value (no decimals) and do not write the unit.arrow_forward
- The hot liquid magma of molten earth was on full display in Mauna Loa as it has been actively erupting over the past couple of weeks.Geologist and scientist have determined that about 50% of the earth's interior is due to the release of heat by the decay of radioactive elements like potassium-40, uranium-238 and thorium-232, which have half-lives of 1.25 billion, 4 billion and 14 billion years, respectively. a) Write the equation of the BETA-minus decay of potassium-40. b). Write the equation of the ALPHA decay of uranium-238. c). Write the equation of the ALPHA decay of thorium-232.arrow_forwardQ2(C). Use A(t )= A0ekt to determine how much of a 100-g sample is present after 250 years if the half-life of Uranium-232 is 68.9 years.arrow_forwardThe radioactive gas krypton-85, produced by nuclear power plants as well as volcanoes, is present in trace amounts in earth’s atmosphere. Its half-life is 10.8 years. Suppose a volcano released 250 g of krypton-85 in an eruption. How much would remain after (a) 10.8 years, (b) 15 years, and (c) 50 years? Round to the nearest tenth of a gram.arrow_forward
- The cell-survival data in the table below fit a multitarget, single-hit survival curve. A)Find the slope at high doses. B) Find the extrapolation number. C) Write the equation that describes the data. Dose (Gy) Surviving Fraction 0.10 0.993 0.25 0.933 0.50 0.729 1.00 0.329 2.00 0.0458 3.00 0.00578 4.00 0.00072 Paragraph BIEEarrow_forwardFluorine-18 (F-18) is a commonly used radionuclide for PET scans. The half-life of F-18 is 110 min. F-18 is used to label the glucose molecules to form the radiotracer called Fludeoxyglucose (FDG). Only consider the physical half-life. Initially, a 5 ml FDG solution was prepared at a concentration of 4 mCi/ml. After 220 min, the FDG solution was all administrated to a patient. Calculate the following questions. Show steps to earn full points. (1) The initial radioactivity of the solution Ag. (ii) The decay constant of F-18 2. (iii) The actual radioactivity that the patient received Ap.arrow_forwardUsing the systematics of exponential processes, the time scale for getting out of a pandemic at its peak through exponential decay of the infection rate or the death rate is estimated from: If the delta variant death rate per day (Po) peaked at 2000 in late September and declined at the national rate of − 1% per day, what is t, the time in days to defeat the virus (i.e. time until the last person dies)? answer choices: 350 525 450 760arrow_forward
- An unknown radioactive element decays into non-radioactive substances. In 360 days the radioactivity of a sample decreases by 34 percent. (a) Find the decay constant k. (Round your answer to 5 decimal places.) (b) What is the half-life of the element? (Round your answer to two decimal places) half-life: (days) (c) How long will it take for a sample of 100 mg to decay to 59 mg? (Round your answer to two decimal places) time needed: (days)arrow_forward1arrow_forwardThe of Meitnerium is 30 minutes. This means the amount of halves every 30 minutes. If H(t) = 9000 * (0.5) ^ (1/30) describes how much Meitnerium is left after t minutes how much was there at the start? Number 4arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning