College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 41P
(a)
To determine
To show that it is not possible for a single photon to be produced by the collision of one electron and positron with equal opposite speed of less magnitude.
(b)
To determine
To show that if two photons are created by the annihilation of a electron and positron with equal and opposite velocity before collision, the two photons must travel in the opposite direction and their energy is same.
(c)
To determine
The wavelength of the two photons and which part of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Is it possible that some parts of the universe contain antimatter whose atoms have nuclei made of antiprotons and antineutrons, surrounded by positrons? How could we detect this condition without actually going there? Can we detect these antiatoms by identifying the light they emit as composed of antiphotons? Explain. What problems might arise if we actually did go there?
Suppose you were to try to create a
proton-antiproton pair by annihilation of
two very high-energy gamma rays of the
same wavelength heading toward each
other. The proton and the anti-proton
have the same masses, but opposite
charges. What would be the minimum
energy needed for each photon? (e = 1.60
× 10-19 C, m proton = 1.67 × 10-27 kg, c =
3.00 × 108 m/s)
939 MeV
O1.022 MeV
O 12.2 MeV
O 1880 MeV
(a) A particle and its antiparticle are at rest relative to an observer and annihilate (completely destroying both masses), creating two γ rays of equal energy. What is the characteristic γ -ray energy you would look for if searching for evidence of proton-antiproton annihilation? (The fact thatsuch radiation is rarely observed is evidence that there is very little antimatter in the universe.) (b) How does this compare with the 0.511-MeV energy associated with electron-positron annihilation?
Chapter 30 Solutions
College Physics (10th Edition)
Ch. 30 - Prob. 1CQCh. 30 - Prob. 2CQCh. 30 - True or false? During one half-life, the mass of a...Ch. 30 - Changing the temperature of atoms affects their...Ch. 30 - Prob. 5CQCh. 30 - Prob. 6CQCh. 30 - Prob. 7CQCh. 30 - Prob. 8CQCh. 30 - Prob. 9CQCh. 30 - Prob. 10CQ
Ch. 30 - Prob. 11CQCh. 30 - Prob. 12CQCh. 30 - Prob. 3MCPCh. 30 - Prob. 4MCPCh. 30 - Prob. 5MCPCh. 30 - Prob. 6MCPCh. 30 - Prob. 7MCPCh. 30 - Prob. 8MCPCh. 30 - Prob. 9MCPCh. 30 - Prob. 10MCPCh. 30 - Prob. 11MCPCh. 30 - Prob. 12MCPCh. 30 - Prob. 1PCh. 30 - Prob. 2PCh. 30 - Prob. 3PCh. 30 - Prob. 4PCh. 30 - Prob. 5PCh. 30 - Prob. 6PCh. 30 - Prob. 7PCh. 30 - Prob. 8PCh. 30 - Prob. 9PCh. 30 - Prob. 10PCh. 30 - Prob. 11PCh. 30 - Prob. 12PCh. 30 - Prob. 13PCh. 30 - Prob. 14PCh. 30 - Calcium-47 is a emitter with a half-life of 4.5...Ch. 30 - Prob. 16PCh. 30 - Prob. 17PCh. 30 - Prob. 18PCh. 30 - Prob. 19PCh. 30 - Prob. 20PCh. 30 - Prob. 21PCh. 30 - Prob. 22PCh. 30 - Prob. 23PCh. 30 - Prob. 24PCh. 30 - Prob. 25PCh. 30 - Prob. 26PCh. 30 - Prob. 27PCh. 30 - Prob. 28PCh. 30 - Prob. 29PCh. 30 - Prob. 30PCh. 30 - Prob. 31PCh. 30 - Prob. 32PCh. 30 - Prob. 33PCh. 30 - Prob. 34PCh. 30 - Prob. 35PCh. 30 - Prob. 36PCh. 30 - Prob. 37PCh. 30 - Prob. 38PCh. 30 - Prob. 39PCh. 30 - Prob. 40PCh. 30 - Prob. 41PCh. 30 - Prob. 42PCh. 30 - Prob. 43PCh. 30 - Prob. 44PCh. 30 - Prob. 45PCh. 30 - Prob. 46PCh. 30 - Prob. 47PCh. 30 - Prob. 48PCh. 30 - Prob. 49PCh. 30 - The results of activity measurements on a...Ch. 30 - Prob. 51GPCh. 30 - Prob. 52GPCh. 30 - Prob. 53GPCh. 30 - Prob. 54GPCh. 30 - Prob. 55GPCh. 30 - Prob. 56GPCh. 30 - Prob. 57GPCh. 30 - Prob. 58GPCh. 30 - Prob. 59GPCh. 30 - The atomic mass of 2056Co is 55.934939 u, and the...Ch. 30 - Prob. 61GPCh. 30 - Prob. 62GPCh. 30 - Prob. 63GPCh. 30 - Prob. 64PPCh. 30 - Prob. 65PPCh. 30 - Prob. 66PPCh. 30 - Prob. 67PPCh. 30 - Prob. 68PPCh. 30 - Prob. 69PPCh. 30 - Prob. 70PPCh. 30 - Prob. 71PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two protons collide to form an antiproton. Suppose the two protons collide head-on with equal speeds. (a) In this frame of reference, what is the threshold energy? (b) Find the velocity corresponding to the threshold energy. (c) Now transform to a frame of reference in which one of the initial protons is at rest, and find the speed and the energy of the other proton.arrow_forwardUse Wien’s law to answer the following questions: (a) The cosmic background radiation peaks in intensity at a wavelength of 1.1 mm. To what temperature does this correspond? (b) About 379 000 y after the big bang, the universe became transparent to electromagnetic radiation. Its temperature then was 2970 K.What was the wavelength at which the background radiation was then most intense?arrow_forwardToday we view the collisions between high-energy particles, why? please explainarrow_forward
- Name: Hubble Distances Redshift z parameter The relativistic redshift is parametrized by z and given by Δ In terms of the scale factor, 2= X do - de de 1+z= ao a (2) Problem 01. Find the redshift z for a Hydrogen spectral line originally at 656 nm which has been observed at a wavelength of 1.64 μm. Astro 001 Fall 2022 Problem 02. How much smaller was the universe when this light was emitted? U₁ = DHO Using the redshift to measure the velocity, we find D~ (1) 0.1 Hubble's Law Hubble's Law states that the recession velocity of a redshifted galaxy is given by the product of the distance and the Hubble constant. (3) ZC Ho where c = 3 x 108 m/s and Ho = 2.3 x 10-18 s in standard units. The standard measurement of the Hubble constant is Ho = 71 (km/s)/Mpc. Problem 03. What is the distance in Mpc and ly to the galaxy measured in problem 01? 1 pc = 3.26 ly.arrow_forwardAccording to the article Alien Antimatter Crashes into Earth e: More than 60 years ago, future Nobel laureate Sheldon Glashow predicted that if an antineutrino – the antimatter answer to the nearly massless neutrino – collided with electron, it could produce a cascade of other particles. The "Glashow resonance phenomenon is hard to detect, in large part because the antineutrino needs about 1,0 %3D times more energy than what's produced in the most powerful colliders on Earth. Let's compare this event to an ordinary baseball with a mass of 146 g. Please use three significant figures in your calculations.arrow_forwardAssume a flat Friedmann-Robertson-Walker universe, and that the density parameters for matter,radiation, and the cosmological constant are given today by Ωm,0 = 0.4, Ωrad,0 = 0.01, and ΩΛ,0 =0.59, respectively.a) Calculate the redshifts for matter-radiation and matter-dark energy equality. b) State what effect the lower ratio of ΩΛ,0/Ωm,0, compared to the standard Λ-CDM cosmology,has on structure formation.arrow_forward
- Calculate the cyclotron frequency for a non-relativistic proton per Tesla of magnetic field.arrow_forwardSuppose you are designing a proton decay experiment and you can detect 50 percent of the proton decays in a tank of water. (a) How many kilograms of water would you need to see one decay per month, assuming a lifetime of 1031 y ? (b) How many cubic meters of water is this? (c) If the actual lifetime is 1033 y , how long would you have to wait on an average to see a single proton decay?arrow_forwardThe expanding universe is carrying distant objects away from each other at a rate proportional to their separations. We use the Doppler effect observed in spectra of distant galaxies and quasars to calculate recession speeds. For the most distant objects recession speeds approach c, and therefore, the relativistic Doppler shift expression must be used. We define the redshift, z, as the fractional change in wavelength. a) The most distant quasar currently known is ULAS J1120+0641, discovered with the UK Infrared Telescope on Mauna Kea. It has a redshift of 7.1. Calculate its radial velocity in terms of v/c. b) Determine the distance to this quasar. c) At what wavelength would the Ha line (656.28 nm) be observed for this quasar?arrow_forward
- .arrow_forwardAccording to the article Alien Antimatter Crashes into Earth : More than 60 years ago, future Nobel laureate Sheldon Glashow predicted that if an collided with an antineutrino the antimatter answer to the nearly massless neutrino | electron, it could produce a cascade of other particles. The "Glashow resonance - phenomenon is hard to detect, in large part because the antineutrino needs about 1,000 times more energy than what's produced in the most powerful colliders on Earth. Let's compare this event to an ordinary baseball with a mass of 146 g. Please use three significant figures in your calculations.arrow_forwardThe average lifetime of mu-meson is 2.19698-10-6 s. These subatomic particles are produced high in the atmosphere, at an elevation of about 10 km. The velocities of mu-mesons are around 0.999c (c denotes the speed of light in vacuum). Will any of these mu-mesons reach the ground? (hint: assume that mu-mesons travel with a constant speed). Constant: c = 3.0-10³ [m/s].arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning