College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 30, Problem 9MCP
To determine
The amount of substance after 3.5h.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 30 Solutions
College Physics (10th Edition)
Ch. 30 - Prob. 1CQCh. 30 - Prob. 2CQCh. 30 - True or false? During one half-life, the mass of a...Ch. 30 - Changing the temperature of atoms affects their...Ch. 30 - Prob. 5CQCh. 30 - Prob. 6CQCh. 30 - Prob. 7CQCh. 30 - Prob. 8CQCh. 30 - Prob. 9CQCh. 30 - Prob. 10CQ
Ch. 30 - Prob. 11CQCh. 30 - Prob. 12CQCh. 30 - Prob. 3MCPCh. 30 - Prob. 4MCPCh. 30 - Prob. 5MCPCh. 30 - Prob. 6MCPCh. 30 - Prob. 7MCPCh. 30 - Prob. 8MCPCh. 30 - Prob. 9MCPCh. 30 - Prob. 10MCPCh. 30 - Prob. 11MCPCh. 30 - Prob. 12MCPCh. 30 - Prob. 1PCh. 30 - Prob. 2PCh. 30 - Prob. 3PCh. 30 - Prob. 4PCh. 30 - Prob. 5PCh. 30 - Prob. 6PCh. 30 - Prob. 7PCh. 30 - Prob. 8PCh. 30 - Prob. 9PCh. 30 - Prob. 10PCh. 30 - Prob. 11PCh. 30 - Prob. 12PCh. 30 - Prob. 13PCh. 30 - Prob. 14PCh. 30 - Calcium-47 is a emitter with a half-life of 4.5...Ch. 30 - Prob. 16PCh. 30 - Prob. 17PCh. 30 - Prob. 18PCh. 30 - Prob. 19PCh. 30 - Prob. 20PCh. 30 - Prob. 21PCh. 30 - Prob. 22PCh. 30 - Prob. 23PCh. 30 - Prob. 24PCh. 30 - Prob. 25PCh. 30 - Prob. 26PCh. 30 - Prob. 27PCh. 30 - Prob. 28PCh. 30 - Prob. 29PCh. 30 - Prob. 30PCh. 30 - Prob. 31PCh. 30 - Prob. 32PCh. 30 - Prob. 33PCh. 30 - Prob. 34PCh. 30 - Prob. 35PCh. 30 - Prob. 36PCh. 30 - Prob. 37PCh. 30 - Prob. 38PCh. 30 - Prob. 39PCh. 30 - Prob. 40PCh. 30 - Prob. 41PCh. 30 - Prob. 42PCh. 30 - Prob. 43PCh. 30 - Prob. 44PCh. 30 - Prob. 45PCh. 30 - Prob. 46PCh. 30 - Prob. 47PCh. 30 - Prob. 48PCh. 30 - Prob. 49PCh. 30 - The results of activity measurements on a...Ch. 30 - Prob. 51GPCh. 30 - Prob. 52GPCh. 30 - Prob. 53GPCh. 30 - Prob. 54GPCh. 30 - Prob. 55GPCh. 30 - Prob. 56GPCh. 30 - Prob. 57GPCh. 30 - Prob. 58GPCh. 30 - Prob. 59GPCh. 30 - The atomic mass of 2056Co is 55.934939 u, and the...Ch. 30 - Prob. 61GPCh. 30 - Prob. 62GPCh. 30 - Prob. 63GPCh. 30 - Prob. 64PPCh. 30 - Prob. 65PPCh. 30 - Prob. 66PPCh. 30 - Prob. 67PPCh. 30 - Prob. 68PPCh. 30 - Prob. 69PPCh. 30 - Prob. 70PPCh. 30 - Prob. 71PP
Knowledge Booster
Similar questions
- Suppose you have a pure radioactive material with a half-life of T1/2. You begin with N0 undecayed nuclei of the material at t = 0. At t=12T1/2, how many of the nuclei have decayed? (a) 14N0 (b) 12N0(C) 34N0 (d) 0.707N0 (e) 0.293N0arrow_forwardThe ceramic glaze on a red-orange “Fiestaware” plate is U2O3and contains 50.0 grams of 238U, but very little 235U. (a) What is the activity of the plate? (b) Calculate the total energy that will be released by the 238U decay, (c) If energy is worth 12.0 cents per kWh , what is the monetary value of the energy emitted? (These brightly- colored ceramic plates went out of production some 30 years ago, but are still available as collectibles.)arrow_forwardA radioactive sample has an activity R. For each of the following changes, indicate whether the activity would increase, decrease. or remain unchanged. Indicate your answers with I, D, or U. (a) The number of radioactive nuclei in the sample is doubled. (b) The half-life of the radioactive nuclei is doubled. (c) The decay constant is doubled. (d) A time period equal to two half-lives is allowed to elapse.arrow_forward
- The mass (M) and the radius (r) of a nucleus can be expressed in terms of the mass number, A. (a) Show that the density of a nucleus is independent of A (b) Calculate the density of a gold (Au) nucleus. Compare your answer to that for iron (Fe).arrow_forward(a) Calculate the energy released in the a decay of 238U . (b) What fraction of the mass of a single 238U is destroyed in the decay? The mass of 234Th is 234.043593 u. (c) Although the fractional mass loss is large for a single nucleus, it is difficult to observe for an entire macroscopic sample of uranium. Why is this?arrow_forward(a) Neutron activation of sodium, which is 100% 23Na, produces 24Na, which is used in some heart scans, as seen in Table 32.1. The equation for the reaction is 23Na+n24Na+ . Find its energy output, given the mass of 24Na is 23.990962 u. (b) What mass at 24Na produces the needed 5.0mCi activity, given its halflife is 15.0 h?arrow_forward
- Derive an approximate relationship between the energy of (decay and halflife using the following data. It may be useful to graph the leg t1/2 against Ea to find some straightline relationship. Table 31.3 Energy and HalfLife for (Decay Nuclide E( (MeV) t1/2 216Ra 9.5 0.18 (s 194Po 7.0 0.7 s 240Cm 6.4 27 d 226Ra 4.91 1600 y 232Th 4.1 1.41010yarrow_forward(a) Calculate the number of grams of deuterium in an 80.000L swimming pool, given deuterium is 0.0150% of natural hydrogen. (b) Find the energy released in joules if this deuterium is fused via the reaction 2H+2H3He+n. (c) Could the neutrons be used to create more energy? (d) Discuss the amount of this type of energy in a swimming pool as compared to that in, say, a gallon of gasoline, also taking into consideration that water is far more abundant.arrow_forwardA rare decay mode has been observed in which 222Ra emits a 14C nucleus. (a) The decay equation is 222RaAX+14C. Identify the nuclide AX. (b) Find the energy emitted in the decay. The mass of 222Ra is 222.015353 u.arrow_forward
- Write a nuclear decay reaction that produces the 90Y nucleus. (Hint: The parent nuclide is a major waste product of reactors and has chemistry similar to calcium, so that it is concentrated in bones if ingested.)arrow_forward2H is a loosely hound isotope of hydrogen. Called deuterium or heavy hydrogen, it is stable but relatively rareit is 0.015% of natural hydrogen. Note that deuterium has Z = N, which should tend to make it more tightly bound, but both are odd numbers. Calculate BE/A, the binding energy per nucleon, for 2H and compare it with the approximate value obtained from line graph in Figure 31.27.arrow_forward(a) Write the decay equation for the decay of 235U. (b) What energy is released in this decay? The mass of the daughter nuclide is 231.036298 u. (c) Assuming the residual nucleus is formed in its ground state, how much energy goes to the particle?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning