DeGarmo's Materials and Processes in Manufacturing
12th Edition
ISBN: 9781118987674
Author: J. T. Black, Ronald A. Kohser
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 30, Problem 20RQ
If a metal part is quite brittle and the part will be subjected to repeated tensile loads, would you select ECM or electrodischarge machining for making it? Why?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In orthogonal turning of a cylindrical tube of wall thickness 5 mm, the axial and the tangential
cutting forces were measured as 1259 N and 1601 N, respectively. The measured chip thickness
after machining was found to be 0.3 mm. The rake angle was 10° and the axial feed was 100
mm/min. the rotational speed of the spindle was 1000 rpm. Assuming the material to be
perfectly and Merchant's first solution, the shear strength of the material is closest to
In plane-strain orthogonal machining, the two main sources of energy dissipation are deformation along the shear plane (~70%) and friction at the tool-chip contact along the rake face (~30%). Consider plane-strain machining of a rigid perfectly-plastic work material whose uniaxial yield stress is 700 MPa, and is independent of strain rate and temperature. A tool of zero-degree rake angle is employed. Measurements showed the (deformed) chip thickness to be twice that of the undeformed chip thickness. Based on the aforementioned distribution of energy, estimate the specific energy for this process.
In an orthogonal cutting test with a bar of 75 mm diameter is reduced to 73 mm by using a HSS tool with arake angle = 10o, following observations were made: length of the chip, lc = 69.44 mm, cutting ratio r =0.3, the horizontal component of the cutting force, FH = 1450 N, and the vertical component of the cuttingforce, FV = 850 N. The various parameters recorded in this cutting operation are: depth of cut, d = 2 mm;feed rate, f = 0.3 mm/rev, cutting speed, V = 60 m/min. Using Merchant’s theory calculate the following:1) Friction force along rake face2) Normal force acting on rake face3) Shear force along the shear plane4) Normal force acting on shear plane5) The percentage error in shear angle predicted by Merchant’s theory6) Shear velocity7) Chip velocity8) Total work done9) The shear work proportion out of the total work done10) The friction work proportion out of the total work done
Chapter 30 Solutions
DeGarmo's Materials and Processes in Manufacturing
Ch. 30 - How do the MRRs for most NTM processes compare to...Ch. 30 - What are the steps in chemical machining using...Ch. 30 - In chemical machining, should the etchant be...Ch. 30 - What are the advantages of chemical blanking over...Ch. 30 - How are multiple depths of cut (steps) produced by...Ch. 30 - Would it be feasible to produce a groove 2 mm wide...Ch. 30 - A drawing calls for making a groove 23 mm wide and...Ch. 30 - Could an ordinary steel weldment be chemically...Ch. 30 - How could you produce a tapered section by...Ch. 30 - What is the principal application of...
Ch. 30 - How is ECM related to chemical machining?Ch. 30 - What effect does work material hardness have on...Ch. 30 - What is the principal cause of tool wear in ECM?Ch. 30 - Would electrochemical grinding be a suitable...Ch. 30 - Upon what factors does the metal removal rate...Ch. 30 - Why is the tool insulated in the ECM schematic?Ch. 30 - What is the nature of the surface obtained by...Ch. 30 - What is the principal advantage of using a moving...Ch. 30 - What effect would increasing the voltage have on...Ch. 30 - If a metal part is quite brittle and the part will...Ch. 30 - If you had to make several holes in a large number...Ch. 30 - Prob. 22RQCh. 30 - Explain (using a little physics and metallurgy)...Ch. 30 - Prob. 24RQCh. 30 - What are some possible defects that can result...Ch. 30 - What are some other uses for the laser other than...Ch. 30 - How does the laser produce coherent light...Ch. 30 - What is ablation?Ch. 30 - What is an excimer?Ch. 30 - In Figure 30.16, what is the protective tape...Ch. 30 - Why is the EBM process done in a vacuum?Ch. 30 - What is the major problem with the redesigned cap...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
a. Determine the gage pressure at point A in Fig. 3.36 b. If the barometric pressure is 737mm of mercury, expre...
Applied Fluid Mechanics (7th Edition)
The mechanism of Prob. 2/15 is repeated here. Develop a general expression for the moment MO of the force actin...
Engineering Mechanics: Statics
An occupied space is being held at 76 F (24 C) and 50 percent relative humidity. A measurement of the globe tem...
Heating Ventilating and Air Conditioning: Analysis and Design
A wet towel hangs on a clothes line under conditions for which one surface receives solar irradiation of Gs=900...
Fundamentals of Heat and Mass Transfer
Round off the following numbers to three significant figures: (a) 58 342 m, (b) 68.534 s, (c) 2553 N, and (d) 7...
Engineering Mechanics: Statics
If a particle has an initial velocity of v0 = 12 ft/s to the right, at s0 = 0, determine its position when t = ...
Engineering Mechanics: Dynamics (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- i need the answer quicklyarrow_forwardmanufacturing technology please answer as soon as possiblearrow_forwardYou have been asked to work on some design problems and technically support the team working on material removal processes: 1. Technician is turning (lathing) a work material with a shear strength of 270 MPa as shown in Figure 1. The following conditions are used: v = 5.0 m/s, f = 0.30 mm/rev, d = 3.0 mm, and rake angle = 15° in the direction of the chip flow. The resulting chip ratio = 0.5. Chip Tool R. RF. Work Figure 1: Turning process. Using the orthogonal model as an approximation of turning, you have been asked to determine: (a) Shear force. (b) Cutting force and thrust force. (c) Friction angle.* ) material removal rate = 4500 mm3/min * ) shear plane angle = 29.02° * ) shear strain = 2.052arrow_forward
- You have been asked to work on some design problems and technically support the team working on material removal processes: 1. Technician is turning (lathing) a work material with a shear strength of 270 MPa as shown in Figure 1. The following conditions are used: v = 5.0 m/s, f = 0.30 mm/rev, d = 3.0 mm, and rake angle = 15° in the direction of the chip flow. The resulting chip ratio = 0.5 , material removal rate = 4500 mm3/min ,shear plane angle = 29.02° and the shear strain is = 2.052. Chip Tool R. RF: Turning process.Using the orthogonal model as an approximation of turning, you have been asked to determine: (a) Shear force. (b) Cutting force and thrust force. (c) Friction angle.arrow_forwardYou have been asked to work on some design problems and technically support the team working on material removal processes: 1. Technician is turning (lathing) a work material with a shear strength of 270 MPa as shown in Figure 1. The following conditions are used: v = 5.0 m/s, f = 0.30 mm/rev, d = 3.0 mm, and rake angle = 15° in the direction of the chip flow. The resulting chip ratio = 0.5. Chip Tool R. RF. Work Figure 1: Turning process. Using the orthogonal model as an approximation of turning, you have been asked to determine: (a) Material removal rate (b) Shear plane angle. (c) Shear strain. (d) Shear force. (e) Cutting force and thrust force.arrow_forwardI need the answer as soon as possiblearrow_forward
- A HSS tool is used to turn a steel workpart that is 300 mm long and 80 mm in diameter. The parameters in the Taylor equation are: n=0.13 and C= 75 (m/min) for a feed of 0.4 mm/rev. The operator and machine tool rate = $30.00/hr, and the tooling cost per cutting edge = $4.00. It takes 2.0 min to load and unload the workpart and 3.50 min to change tools. Determine: a. Tutting speed for maximum production rate, b. Tool life in min of cutting, and c. Cycle time and cost per unit of product.arrow_forwardA HSS tool is used to turn a steel workpart that is 300 mm long and 80 mm in diameter. The parameters in the Taylor equation are: n = 0.13 and C = 75 (m/min) for a feed of 0.4 mm/rev. The operator and machine tool rate = $30.00/hr, and the tooling cost per cutting edge = $4.00. It takes 2.0 min to load and unload the workpart and 3.50 min to change tools. Determine: Tutting speed for maximum production rate, Tool life in min of cutting, and Cycle time and cost per unit of product. determine cutting speed for minimum cost.arrow_forwardI need the answer as soon as possiblearrow_forward
- I need answer within 20 minutes please please with my best wishesarrow_forwardA 600mm*30mm flat surface of a plate is to be finish machined on a shaper .The plate has been fixed with 600 mm side along the tool travel direction. If the tool over-travel at each end of the plate is 20 mm, average cutting speed is 8 m/min, feed rate is 0.3 mm/stroke and the ratio of return time to cutting time of the tool is 1:2 Determine time required for machining?arrow_forward(a) Describe three basic categories of material removal process. (b) What is the different between machining with another manufacturing process. (c) Explain the advantages and disadvantages machining process. (d) Briefly explain the difference between roughing and finishing operation in machining.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY