DeGarmo's Materials and Processes in Manufacturing
12th Edition
ISBN: 9781118987674
Author: J. T. Black, Ronald A. Kohser
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 30, Problem 9RQ
How could you produce a tapered section by chemical machining?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
None
Describe the principles from power input of the shaping machine to the output of the tool
Manufacuring processes
List the forces acting on a chip during machining operation?
Chapter 30 Solutions
DeGarmo's Materials and Processes in Manufacturing
Ch. 30 - How do the MRRs for most NTM processes compare to...Ch. 30 - What are the steps in chemical machining using...Ch. 30 - In chemical machining, should the etchant be...Ch. 30 - What are the advantages of chemical blanking over...Ch. 30 - How are multiple depths of cut (steps) produced by...Ch. 30 - Would it be feasible to produce a groove 2 mm wide...Ch. 30 - A drawing calls for making a groove 23 mm wide and...Ch. 30 - Could an ordinary steel weldment be chemically...Ch. 30 - How could you produce a tapered section by...Ch. 30 - What is the principal application of...
Ch. 30 - How is ECM related to chemical machining?Ch. 30 - What effect does work material hardness have on...Ch. 30 - What is the principal cause of tool wear in ECM?Ch. 30 - Would electrochemical grinding be a suitable...Ch. 30 - Upon what factors does the metal removal rate...Ch. 30 - Why is the tool insulated in the ECM schematic?Ch. 30 - What is the nature of the surface obtained by...Ch. 30 - What is the principal advantage of using a moving...Ch. 30 - What effect would increasing the voltage have on...Ch. 30 - If a metal part is quite brittle and the part will...Ch. 30 - If you had to make several holes in a large number...Ch. 30 - Prob. 22RQCh. 30 - Explain (using a little physics and metallurgy)...Ch. 30 - Prob. 24RQCh. 30 - What are some possible defects that can result...Ch. 30 - What are some other uses for the laser other than...Ch. 30 - How does the laser produce coherent light...Ch. 30 - What is ablation?Ch. 30 - What is an excimer?Ch. 30 - In Figure 30.16, what is the protective tape...Ch. 30 - Why is the EBM process done in a vacuum?Ch. 30 - What is the major problem with the redesigned cap...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Question 3. a. A cast iron component for motorcycle is to be turned with machine settings of feed = 0.22 mm/rev, and speed = 100 m/min. The cutting tool is a carbide tip with a nose radius of 1.2 mm and the rai for the material at a cutting speed of 100 m/min is 1.3. Calculate the surface roughness for this cut. [6 marks]arrow_forwardFor the mass production of flat metal sheet shapes; Waterjet cutting is the most appropriate manufacturing solution Stamping is used to obtain the sheet geometry Casting is an optimal solution Laser cutting is the optimal choicearrow_forwardIn plane-strain orthogonal machining, the two main sources of energy dissipation are deformation along the shear plane (~70%) and friction at the tool-chip contact along the rake face (~30%). Consider plane-strain machining of a rigid perfectly-plastic work material whose uniaxial yield stress is 700 MPa, and is independent of strain rate and temperature. A tool of zero-degree rake angle is employed. Measurements showed the (deformed) chip thickness to be twice that of the undeformed chip thickness. Based on the aforementioned distribution of energy, estimate the specific energy for this process.arrow_forward
- Define specific energy for plane strain machining (cutting). In plane-strain machỉning, the two main sources of energy dissipation are deformation along the shear plane (~70%) and friction at the tool-chip contact along the rake face (~30%). Consider machining of a rigid perfectly-plastic work material whose uniaxial yield stress is 700 MPa, and is independent of strain rate and temperature. A tool of zero-degree rake angle is employed. Measurements showed the (deformed) chip thickness to be twice that of the undeformed chip thickness. Based on the aforementioned distribution of energy, estimate the specific energy for this process.arrow_forward1. A milling operation is to be performed on a ductile cast iron shaft to make slots for assembly. The operation will be done at high speeds for good surface finish. For each of the following tool materials, indicate whether it is a reasonable candidate to use in the operation with a detailed description of why or why not including required alloying element/grade/group etc. where applicable: (i) plain carbon steel, (ii) high-speed steel, (iii) cemented carbide, (iv) ceramic, and (v) Sintered polycrystalline diamond. After selection of material/materials discuss about (i) recommended angles and tool signature (ii) how to held cutting edge, and type of cutting fluids With reasons for each recommended material. 2. Make a figure and explain how shear plane angle effect the power requirements in the machining. How can you reduce the power requirements during machining in orthogonal cutting?arrow_forwardwhat is polishing in manufcturing processes?arrow_forward
- In orthogonal turning of a cylindrical tube of wall thickness 5 mm, the axial and the tangential cutting forces were measured as 1259 N and 1601 N, respectively. The measured chip thickness after machining was found to be 0.3 mm. The rake angle was 10° and the axial feed was 100 mm/min. the rotational speed of the spindle was 1000 rpm. Assuming the material to be perfectly and Merchant's first solution, the shear strength of the material is closest toarrow_forwardI need answer within 20 minutes please please with my best wishesarrow_forwardWill a single-cut or a double-cut file produce a smoother surface?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Precision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage Learning
Precision Machining Technology (MindTap Course Li...
Mechanical Engineering
ISBN:9781285444543
Author:Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher:Cengage Learning
Types of Manufacturing Process | Manufacturing Processes; Author: Magic Marks;https://www.youtube.com/watch?v=koULXptaBTs;License: Standard Youtube License