INTRO TO GEN ANALYSIS W/ACHIEVE ACCESS
12th Edition
ISBN: 9781319423865
Author: Griffiths
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 43.11P
Summary Introduction
To explain: The type of inheritance pattern shown by F2 generation in Drosophila melanogaster.
Introduction: The F2 generation or second filial generation of offspring is obtained by selfing the progeny obtained from the F1 generation (first filial generation).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In Drosophila, the brown mutation (bw, chromosome 2, position 104.5) results in brown eyes, while miniature (min, chromosome X, position 36.1) results in wings that are 2/3 the length of wild type. True breeding, wild type females are mated with true breeding males with brown eyes and miniature wings.
Using Drosophila notation, diagram the P1 and F1 crosses.
P1 F1
Fill in the chart with phenotypic ratios that would be expected in the F2 generation. Use the space provided to show your work.
Phenotype
Females
Males
Overall (♀and ♂)
=1 =1 =1
In Drosophila, singed bristles (sn) and cut wings (ct) are both caused by recessive, X-linked alleles. The wild type alleles (sn+ and ct+) are responsible for straight bristles and intact wings, respectively. A female homozygous for sn and ct+ is crossed to a sn+ct male. The F1 flies are interbred. The F2 males are distributed as follows:
genotype
number
sn ct
15
sn ct+
34
sn+ ct
33
sn+ct+
18
What is the map distance between sn and ct?
In Drosophila, the allele for red eyes (pt) is wild-type and the allele for purple eyes (p¯) is mutant. The allele for grey body (b+) is wild-type and the allele for black body (b¯) is
mutant. Flies with p*p* b*b* genotypes are mated with flies that have p p- b¯b¯ genotypes. A testcross was then performed in which the F1 offspring with p*p¯ b*b¯ genotypes
were mated with flies with p p¯ b¯b genotypes. Ten-thousand flies were produced from this test cross. The following results were observed:
4,300 red eye, grey body flies
550 red eye, black body flies
4,500 purple eye, black body flies
650 purple eye, grey body flies
Which F2 phenotypes are parental types? Which F2 phenotypes are recombinant types? What is the distance between the gene loci for eye color and body color?
Use the equation for Hardy-Weinberg equilibrium for the following questions. p+q = 1
p2 + 2pq + q2 = 1
Chapter 3 Solutions
INTRO TO GEN ANALYSIS W/ACHIEVE ACCESS
Ch. 3 - Prob. 1PCh. 3 - Prob. 2PCh. 3 - Prob. 3PCh. 3 - Prob. 4PCh. 3 - Prob. 5PCh. 3 - Prob. 6PCh. 3 - Prob. 7PCh. 3 - Prob. 8PCh. 3 - Prob. 9PCh. 3 - Prob. 10P
Ch. 3 - Prob. 11PCh. 3 - Prob. 12PCh. 3 - Prob. 13PCh. 3 - Prob. 14PCh. 3 - Prob. 15PCh. 3 - Prob. 16PCh. 3 - Prob. 17PCh. 3 - Prob. 18PCh. 3 - Prob. 19PCh. 3 - Prob. 20PCh. 3 - Prob. 21PCh. 3 - Prob. 22PCh. 3 - Prob. 23PCh. 3 - Prob. 24PCh. 3 - Prob. 25PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28PCh. 3 - Prob. 29PCh. 3 - Prob. 30PCh. 3 - Prob. 31PCh. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Prob. 36PCh. 3 - Prob. 37PCh. 3 - Prob. 38PCh. 3 - Prob. 39PCh. 3 - Prob. 40PCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - Prob. 43PCh. 3 - Prob. 43.1PCh. 3 - Prob. 43.2PCh. 3 - Prob. 43.3PCh. 3 - Prob. 43.4PCh. 3 - Prob. 43.5PCh. 3 - Prob. 43.6PCh. 3 - Prob. 43.7PCh. 3 - Prob. 43.8PCh. 3 - Prob. 43.9PCh. 3 - Prob. 43.10PCh. 3 - Prob. 43.11PCh. 3 - Prob. 43.12PCh. 3 - Prob. 43.13PCh. 3 - Prob. 43.14PCh. 3 - Prob. 43.15PCh. 3 - Prob. 44PCh. 3 - Prob. 45PCh. 3 - Prob. 46PCh. 3 - Prob. 47PCh. 3 - Prob. 48PCh. 3 - Prob. 49PCh. 3 - Prob. 50PCh. 3 - Prob. 51PCh. 3 - Prob. 52PCh. 3 - Prob. 53PCh. 3 - Prob. 54PCh. 3 - Prob. 55PCh. 3 - Prob. 56PCh. 3 - Prob. 57PCh. 3 - Prob. 58PCh. 3 - Prob. 59PCh. 3 - Prob. 61PCh. 3 - Prob. 62PCh. 3 - Prob. 63PCh. 3 - Prob. 64PCh. 3 - Prob. 65PCh. 3 - Prob. 66PCh. 3 - Prob. 67PCh. 3 - Prob. 70PCh. 3 - Prob. 1GSCh. 3 - Prob. 2GSCh. 3 - Prob. 3GS
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- In Drosophila, singed bristles (sn) and cut wings (ct) are both caused by recessive, X-linked alleles. The wild type alleles (sn+ and ct+) are responsible for straight bristles and intact wings, respectively. A female homozygous for sn+ and ct+ is crossed to a sn ct male. The F1 flies are interbred. The F2 males are distributed as follows sn ct 36 sn ct+ 13 sn+ ct 12 sn+ ct+ 39 What is the map distance between sn and ct?arrow_forwardIn Drosophila, a cross was made between females—all expressing the three X-linked recessive traits scute bristles (sc), sable body (s), and vermilion eyes (v)—and wild-type males. In the F1, all females were wild type, while all males expressed all three mutant traits. The cross was carried to the F2 generation, and 1000 offspring were counted, with the results shown in the following table. Phenotype Offspring sc s v 314 + + + 280 + s v 150 sc + + 156 sc + v 46 + s + 30 sc s + 10 + + v 14 No determination of sex was made in the data. (a) Using proper nomenclature, determine the genotypes of the P1 and F1 parents. (b) Determine the sequence of the three genes and the map distances between them. (c) Are there more or fewer double crossovers than expected? (d) Calculate the coefficient of coincidence. Does it represent positive or negative interference?arrow_forwardIn autotetraploid Chinese primrose (Primula sinensis L.), the gene controlling stigma color is very near the centromere of the chromosome carrying it. The allele G for green stigma is dominant to g for red stigmas. A homozygous green autotetraploid strain is crossed with a homozygous red autotetraploid strain. Each of the F1 GGgg plants would obtain 12 gametes which are 2GG, 8Gg, and 2g. How were these obtained?arrow_forward
- In Drosophila, the sepia mutation (se, chromosome 3, position 26) results in dark brown eyes, while cinnabar (cn, chromosome 2, position 57.5) results in bright orange-red eyes. True breeding, wild type females are mated with true breeding males homozygous recessive for both traits. Using Drosophila notation, diagram the P1 and F1 crosses. P1 F1 Fill in the chart with phenotypic ratios that would be expected in the F2 generation. Use the space provided to show your work. Phenotype Females Males Overall (♀and ♂) =1 =1arrow_forwardAnother cross in Drosophila involved the recessive, X-linked genes yellow (y), white (w), and cut (ct). A yellow-bodied, white-eyed female with normal wings was crossed to a male whose eyes and body were normal but whose wings were cut. The F1 females were wild type for all three traits, while the F1 males expressed the yellow-body and white-eye traits. The cross was carried to an F2 progeny, and only male offspring were tallied. On the basis of the data shown here, a genetic map was constructed. Phenotype Male Offspring y + ct 9 + w + 6 y w ct 90 + + + 95 + + ct 424 y w + 376 y + + 0 + w ct 0 (a) Diagram the genotypes of the F1 parents. (b) Construct a map, assuming that white is at locus 1.5 on the X chromosome. (c) Were any double-crossover offspring expected? (d) Could the F2 female offspring be used to construct the map? Why or why not?arrow_forwardIn Drosophila, the dominant Bar mutation (B, chromosome X, position 57) results in thin bar- shaped eyes, while the recessive singed (sn, chromosome X, position 21) results burnt looking bristles. True breeding, wild type females are mated with true breeding males with Bar eyes and singed bristles. Using Drosophila notation, diagram the P1 and F1 crosses. P1 F1 Fill in the chart with phenotypic ratios that would be expected in the F2 generation. Use the space provided to show your work. Phenotype Females Males Overall (♀and ♂) =1 =1 =1arrow_forward
- The phenotype of crooked wings (cw) in Drosophila melanogaster is caused by a recessive mutant gene that independently assorts with a recessive mutant gene for hairy (h) body. Assume that a cross is made between a fly with normal wings and a hairy body and a fly with crooked wings and normal body hair. All F1 flies from this cross were wild-type, and these flies were crossed among each other to produce 288 F2 offspring. Which phenotypes would you expect among the offspring in the F2 generation, and how many of each phenotype would you expect?arrow_forwardIn Drosophila, a cross was made between a yellow-bodied male with vestigial wings and a wild-type (WT) female(brown body and normal wings). The F1 generation consisted of WT males and WT females. The F1 males and females were crossed, and the F2 progeny consisted of 16 yellow males with vestigial wings, 48 yellow males with WT wings, 15 brown males with vestigial wings, 49 WT males, 31 brown females with vestigial wings, and 97 WT females. Based on these results, explain the inheritance of the two genes (i.e. autosomal or sex-linked, dominant or recessive).arrow_forwardIn silkmoths (Bombyx mori), red eyes (re) and white-banded wings (wb) are encoded by two mutant alleles that are recessive to those that produce wild-type traits (re+ and wb+); these two genes are on the same chromosome. A moth homozygous for red eyes and white-banded wings is crossed with a moth homozygous for the wild-type traits. The F1 have wild-type eyes and wild-type wings. The F1 are crossed with moths that have red eyes and white-banded wings in a testcross. The progeny of this testcross are wild-type eyes, wild-type wings red eyes, wild-type wings wild-type eyes, white-banded wings red eyes, white-banded wings a. What phenotypic proportions would be expected if the genes for red eyes and for white-banded wings were located on different chromosomes? b. What is the rate of recombination between the gene for red eyes and the gene for white-banded wings?arrow_forward
- In an autotetraploid Chinese primrose (Primula sinensis L.), the gene controlling stigma color is very near the centromere of the chromosome carrying it. The allele G for green stigma is dominant to g for red stigmas. A homozygous green autotetraploid strain is crossed with a homozygous red autotetraploid strain. What is the genotype of the F1? Show the types of gametes the F1’s may be expected to form and derive the expected proportion of each. What phenotypic ratio of green to red is expected if: The F1’s are intercrossed? The F1’s are crossed with red plants If the G locus were 50 or more map units from the centromere, what types and proportions of gametes would the F1 be expected to produce? Derive the expected F2 phenotypic ratio.arrow_forwardThe allele b gives Drosophila flies a black body and b+ gives brown, the wild-type phenotype. The allele wx of a separate gene gives waxy wings and wx+ gives non-waxy, the wild-type phenotype. The allele cn of a third gene gives cinnabar eyes and cn+ gives red, the wild-type phenotype. A female heterozygous for these three genes is testcrossed, and 1000 progeny are classified with the following phenotypes. 382 cinnabar 379 black, waxy 69 waxy, cinnabar 67 black 48 waxy 44 black, cinnabar 5 wild type 6 black, waxy, cinnabar Based on this data, what is the correct map of these genes in terms of order and distance?arrow_forwardTwo pure-breeding strains of flies are mated, and the F1 are intercrossed. The first strain has curled wings and black bodies. The second strain has straight wings and brown bodies. The F2 progeny are 271 straight wings with brown bodies, 31 curled wings with black bodies, 94 curled wings with brown bodies and 90 straight wings with black bodies. If instead of the above, assume the wing shape gene and the body color gene are completely linked. From parents that are curled winged with brown bodies mated to straight winged with black bodies, what would be the outcome of an F1 intercross? (Specify the phenotypes and the frequency of each expected).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Human Anatomy & Physiology (11th Edition)BiologyISBN:9780134580999Author:Elaine N. Marieb, Katja N. HoehnPublisher:PEARSONBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxAnatomy & PhysiologyBiologyISBN:9781259398629Author:McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa StouterPublisher:Mcgraw Hill Education,
- Molecular Biology of the Cell (Sixth Edition)BiologyISBN:9780815344322Author:Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter WalterPublisher:W. W. Norton & CompanyLaboratory Manual For Human Anatomy & PhysiologyBiologyISBN:9781260159363Author:Martin, Terry R., Prentice-craver, CynthiaPublisher:McGraw-Hill Publishing Co.Inquiry Into Life (16th Edition)BiologyISBN:9781260231700Author:Sylvia S. Mader, Michael WindelspechtPublisher:McGraw Hill Education
Human Anatomy & Physiology (11th Edition)
Biology
ISBN:9780134580999
Author:Elaine N. Marieb, Katja N. Hoehn
Publisher:PEARSON
Biology 2e
Biology
ISBN:9781947172517
Author:Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:OpenStax
Anatomy & Physiology
Biology
ISBN:9781259398629
Author:McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa Stouter
Publisher:Mcgraw Hill Education,
Molecular Biology of the Cell (Sixth Edition)
Biology
ISBN:9780815344322
Author:Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter
Publisher:W. W. Norton & Company
Laboratory Manual For Human Anatomy & Physiology
Biology
ISBN:9781260159363
Author:Martin, Terry R., Prentice-craver, Cynthia
Publisher:McGraw-Hill Publishing Co.
Inquiry Into Life (16th Edition)
Biology
ISBN:9781260231700
Author:Sylvia S. Mader, Michael Windelspecht
Publisher:McGraw Hill Education
Plant Reproduction in Angiosperms; Author: Amoeba Sisters;https://www.youtube.com/watch?v=HLYPm2idSTE;License: Standard YouTube License, CC-BY