INTRO TO GEN ANALYSIS W/ACHIEVE ACCESS
12th Edition
ISBN: 9781319423865
Author: Griffiths
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 39P
a.
Summary Introduction
To determine: The interpretation of the results from the progeny number and the probable genotypes.
Introduction: The mutation is the change in the
b.
Summary Introduction
To determine: The proportion of testcross progeny that will have no trichomes from the cross between original mutant A and original mutant B.
Introduction: The genotype is the genetic constitution of the organism while the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You are a developmental geneticist studying flowering time variation in Arabidopsis. You perform a
mutagenesis screen to identify mutants in the photoperiod pathway. You conduct the screen and
find two different plants that show the same mutant phenotype. You then use a complementation
test. What is the predicted outcome of this test if both phenotypes are caused by mutations in
separate genes?
recover the wild type phenotype
overexpress the gene
O recover the mutant phenotype
Here are schematic diagrams of mutant Drosophila larvae.
The left side of each pair shows a wild-type larva, with gray boxes showing the sections that are missing in the mutant larva. Which type of gene is defective in each larva: a gap gene, a pair-rule gene, or a segment-polarity gene?
To understand the genetic basis of locomotion in the diploid nematode Caenorhabditis elegans, recessive mutations were obtained, all making the worm “wiggle” ineffectually instead of moving with its usual smooth gliding motion. These mutations presumably affect the nervous or muscle systems. Twelve homozygous mutants were intercrossed, and the F1 hybrids were examined to see if they wiggled. The results were as follows, where a plus sign means that the F1 hybrid was wild type (gliding) and “w” means that the hybrid wiggled.a. Explain what this experiment was designed to test. b. Use this reasoning to assign genotypes to all 12 mutants. c. Explain why the phenotype of the F1 hybrids between mutants 1 and 2 differed from that of the hybrids between mutants 1 and 5
Chapter 3 Solutions
INTRO TO GEN ANALYSIS W/ACHIEVE ACCESS
Ch. 3 - Prob. 1PCh. 3 - Prob. 2PCh. 3 - Prob. 3PCh. 3 - Prob. 4PCh. 3 - Prob. 5PCh. 3 - Prob. 6PCh. 3 - Prob. 7PCh. 3 - Prob. 8PCh. 3 - Prob. 9PCh. 3 - Prob. 10P
Ch. 3 - Prob. 11PCh. 3 - Prob. 12PCh. 3 - Prob. 13PCh. 3 - Prob. 14PCh. 3 - Prob. 15PCh. 3 - Prob. 16PCh. 3 - Prob. 17PCh. 3 - Prob. 18PCh. 3 - Prob. 19PCh. 3 - Prob. 20PCh. 3 - Prob. 21PCh. 3 - Prob. 22PCh. 3 - Prob. 23PCh. 3 - Prob. 24PCh. 3 - Prob. 25PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28PCh. 3 - Prob. 29PCh. 3 - Prob. 30PCh. 3 - Prob. 31PCh. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Prob. 36PCh. 3 - Prob. 37PCh. 3 - Prob. 38PCh. 3 - Prob. 39PCh. 3 - Prob. 40PCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - Prob. 43PCh. 3 - Prob. 43.1PCh. 3 - Prob. 43.2PCh. 3 - Prob. 43.3PCh. 3 - Prob. 43.4PCh. 3 - Prob. 43.5PCh. 3 - Prob. 43.6PCh. 3 - Prob. 43.7PCh. 3 - Prob. 43.8PCh. 3 - Prob. 43.9PCh. 3 - Prob. 43.10PCh. 3 - Prob. 43.11PCh. 3 - Prob. 43.12PCh. 3 - Prob. 43.13PCh. 3 - Prob. 43.14PCh. 3 - Prob. 43.15PCh. 3 - Prob. 44PCh. 3 - Prob. 45PCh. 3 - Prob. 46PCh. 3 - Prob. 47PCh. 3 - Prob. 48PCh. 3 - Prob. 49PCh. 3 - Prob. 50PCh. 3 - Prob. 51PCh. 3 - Prob. 52PCh. 3 - Prob. 53PCh. 3 - Prob. 54PCh. 3 - Prob. 55PCh. 3 - Prob. 56PCh. 3 - Prob. 57PCh. 3 - Prob. 58PCh. 3 - Prob. 59PCh. 3 - Prob. 61PCh. 3 - Prob. 62PCh. 3 - Prob. 63PCh. 3 - Prob. 64PCh. 3 - Prob. 65PCh. 3 - Prob. 66PCh. 3 - Prob. 67PCh. 3 - Prob. 70PCh. 3 - Prob. 1GSCh. 3 - Prob. 2GSCh. 3 - Prob. 3GS
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- An undergraduate researcher in your lab is studying mutations affecting the wings of Drosophila melanogaster. She has identified two mutant phenotypes of interest: bent wings (be), which are recessive to the wild-type straight wings (be+), and apterous (ap) mutants (which are wingless). The apallele is recessive to the wild-type allele (ap+), which allows wings to develop. If a homozygous bent-winged fly (which possesses the normal allele of apterous) is crossed with a homozygous wingless fly (which possesses the normal allele of bent wings), what phenotypic ratio would you expect to observe in the F2 generation of this cross? a) Please indicate the ratio, including the genotypes and phenotypes of all phenotypic classes. Phenotype: Genotype(s) corresponding to this phenotype Phenotypic ratio: (Be sure to NAME the classes in the ratio). B) Please NAME and DEFINE the type of gene interaction illustrated in this example.arrow_forwardOur understanding of maternal effect genes has been greatly aided by their identification in experimental organisms such as Drosophila melanogaster and Caenorhabditis elegans. In experimental organisms with a short generation time, geneticists have successfully searched for mutant alleles that prevent the normal process of embryonic development. In many cases, the offspring die at early embryonic or larval stages. These are called maternal effect lethal alleles. How would a researcher identify a mutation that produced a recessive maternal effect lethal allele?arrow_forwardIn plants, floral organs develop from concentric rings of tissue called whorls. Beginning from the most outside ring, whorl 1 develops into sepals, whorl 2 develops into petals, whorl 3 develops into stamens, and whorl 4 develops into carpels. Analogous to the homeotic mutants of Drosophila, recessive mutations were found in genes that encode transcription factors. These mutants change the organ identity of a given whorl to the identity of a different whorl. The following table shows the mutant phenotypes caused by various floral organ mutations found in the genetic model plant, Arabidopsis. Genotype wild-type ap2 lap2 ap3 lap3 ag lag sepals carpels sepals sepals whorls 2 and 3 whorls 3 and 4 whorls 1 and 2 whorls 2 and 4 All four whorls 1 petals stamens sepals petals Based on the table above, which whorls require a functional AG gene. 2 Whorl stamens stamens carpels petals 3 carpels carpels carpels sepals 4arrow_forward
- Interested in exploring the genetic pathways that lead to neurological issues, you want to see if recessive mutations which generate too many neurons (tm) in flies - which many causes autistic like symptoms are in the same gene as mutations that generate too few neurons (tf) - intellectual diabilities. You cross a true-breeding homozygous tm/tm fly to a homozygous too few neuron fly tf/tf. What phenotype in the progeny would tell these mutations are in different genes?arrow_forwardFlies homozygous for recessive null mutations in thesevenless (sev) or bride-of-sevenless (boss) genes have the same mutant phenotype: Every ommatidium(facet) in their eyes lacks photoreceptor cell 7 (R7).The R7 cells enable flies to detect UV light.a. Given that flies normally move toward light, suggest a screening method that would enable you toidentify mutations in additional genes required forR7 determination.b. Would you be able to recover mutations in everygene required for R7 development with yourmethod? Explain.c. How could you tell whether any of the new mutationsyou found in your screen are alleles of sev or boss?d. Suppose you found one recessive mutant allele ofa gene not previously known to be involved in eyedevelopment. How could you use this allele in anew mutagenesis screen to find additional allelesof this gene? Why might you want additional mutant alleles to study the process?arrow_forwardBrainbow is a genetic approach to fate mapping developed to label cells with a seeming rainbow of possible colors, which can be used to identify each individual cell in a tissue or even a whole embryo. Give the mechanics behind this technique. What are its applications to the field of Biology in general, and to Developmental Biology in particular?arrow_forward
- You are studying a plant with tissue comprising both green and white sectors. You wish to decide whether this phenomenon is due (1) to a chloroplast mutation of the type considered in this chapter or (2) to a dominant nuclear mutation that inhibits chlorophyll production and is present only in certain tissue layers of the plant as a mosaic. Outline the experimental approach that you would use to resolve this problem.arrow_forwardGive Detailed Solution (no need Handwritten)arrow_forward. In the plant Arabidopsis thaliana, a geneticist is interested in the development of trichomes (small projections). A large screen turns up two mutant plants (A and B) that have no trichomes, and these mutants seem to be potentially useful in studying trichome development. (If they were determined by single-gene mutations, then finding the normal and abnormal functions of these genes would be instructive.) Each plant is crossed with wild type; in both cases, the next generation (F1) had normal trichomes. When F1 plants were selfed, the resulting F2’s were as follows: F2 from mutant A: 602 normal; 198 no trichomes F2 from mutant B: 267 normal; 93 no trichomesa. What do these results show? Include proposed genotypes of all plants in your answer. b. Under your explanation to part a, is it possible to confidently predict the F1 from crossing the original mutant A with the original mutant B?arrow_forward
- In Drosophila, the wildtype eye color is black. In the laboratory, you screened for mutants than when homozygous results to different eye phenotypes. You found two mutants 1) red eye (re) and 2) white eye (we). You performed a complementation test and the resulting eye phenotype was gray. From the results, what conclusion can you make? A. There was complementation, thus the two mutations are alleles of different genes. B. There was no complementation, thus the two mutations are alleles of different genes. C. The two mutations failed to complement, thus they are alleles of different genes. D. The two mutations failed to complement, thus they are alleles of the same genes. E. The two mutations complemented, hence they are likely controlled by different genes.arrow_forwardDuring the course of a research project you generate a gene knockout line in Arabidopsis thaliana to study the function of a gene you believe plays a crucial role in cellular metabolism. You note that the initial transformants are a bit smaller than normal. In subsequent crosses you are unable to isolate homozygotes for the knockout allele. Heterozygotes in subsequent generation are still a bit smaller than the homozygous wild type plants. Explain what is happening.arrow_forwardA paper hypothesizes that white flowers are unable to produce anthocyanins (purple pigments) because they lack a functional “A” protein. However, it is also possible that an unknown gene is responsible for the lack of anthocyanins. Now that they have isolated DNA sequences of the “A” allele, design an experiment to use these DNA sequences to distinguish between these two hypotheses.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Human Anatomy & Physiology (11th Edition)BiologyISBN:9780134580999Author:Elaine N. Marieb, Katja N. HoehnPublisher:PEARSONBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxAnatomy & PhysiologyBiologyISBN:9781259398629Author:McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa StouterPublisher:Mcgraw Hill Education,
- Molecular Biology of the Cell (Sixth Edition)BiologyISBN:9780815344322Author:Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter WalterPublisher:W. W. Norton & CompanyLaboratory Manual For Human Anatomy & PhysiologyBiologyISBN:9781260159363Author:Martin, Terry R., Prentice-craver, CynthiaPublisher:McGraw-Hill Publishing Co.Inquiry Into Life (16th Edition)BiologyISBN:9781260231700Author:Sylvia S. Mader, Michael WindelspechtPublisher:McGraw Hill Education
Human Anatomy & Physiology (11th Edition)
Biology
ISBN:9780134580999
Author:Elaine N. Marieb, Katja N. Hoehn
Publisher:PEARSON
Biology 2e
Biology
ISBN:9781947172517
Author:Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:OpenStax
Anatomy & Physiology
Biology
ISBN:9781259398629
Author:McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa Stouter
Publisher:Mcgraw Hill Education,
Molecular Biology of the Cell (Sixth Edition)
Biology
ISBN:9780815344322
Author:Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter
Publisher:W. W. Norton & Company
Laboratory Manual For Human Anatomy & Physiology
Biology
ISBN:9781260159363
Author:Martin, Terry R., Prentice-craver, Cynthia
Publisher:McGraw-Hill Publishing Co.
Inquiry Into Life (16th Edition)
Biology
ISBN:9781260231700
Author:Sylvia S. Mader, Michael Windelspecht
Publisher:McGraw Hill Education
Embryology | Fertilization, Cleavage, Blastulation; Author: Ninja Nerd;https://www.youtube.com/watch?v=8-KF0rnhKTU;License: Standard YouTube License, CC-BY