Interpretation:
Among I, II and III, arrangement that possesses strongest intermolecular attractions has to be determined. Also, reason for the same has to be explained.
Concept Introduction:
Intermolecular forces are forces that are responsible for interaction between molecules. Such forces include both attractive as well as repulsive forces.
Types of intermolecular forces:
1. Ion-dipole forces: These forces come into play when ions interact with polar molecules. Ion gets attracted to oppositely charged end of polar molecule.
2. Dipole-dipole forces: These forces arise when there is interaction between oppositely charged ends of different dipoles.
3. London forces: These forces exist when there is interaction between nonpolar molecules. There occurs distortion in symmetry of electron clouds when two nonpolar molecules come closer to each other. Such forces exist in all molecules and therefore London forces are called universal.
4. Hydrogen bonding: This intermolecular force exists when hydrogen atoms are connected to highly electronegative elements like
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
CHEM PRINCIPLES LL W/ACHIEVE ONE-SEM
- What is the boiling point of water at an elevation of 1.15x10^4 ft? Use three significant figures.arrow_forwardWhich of the following statement is incorrect for attractive intermolecular forces? O a. Important at intermediate separation. O b. Interaction scale measured in molecular diameters. O c. Ineffective when molecules are far apart. O d. It takes place at moderate pressure. Calculate the volume of oxygen produced when 0.5 moles of KCIO3 is heated at 101.325 kPa and 25 °C. 2 KCIO ; (s) → 2 KC(s) + 3 0,(g) O a. 2.180 m3 O b. 0.018 m3 O c. 1.183 m3 O d. 18.34 m3arrow_forwardSilane (SiH4), phosphine (PH3), and hydrogen sulfide (H2S) melt at −185 °C, −133 °C, and −85 °C, respectively. What does this suggest about the polar character and intermolecular attractions of the three compounds?arrow_forward
- A greenhouse contains 256 m³ of air at a temperature of 26°C, and a humidifier in it vaporizes 4.20 L of water. (a) Whatis the pressure of water vapor in the greenhouse, assuming that none escapes and that the air was originally completely dry (dof H₂O =1.00 g/mL)? (b) What total volume of liquid water would have to be vaporized to saturate the air (i.e., achieve 100% rela-tive humidity)?arrow_forwardIn part 1 of this experiment you will be determining the enthalpy of vaporization of water. To do this you must first find the number of moles of air in your U-Tube measuring device. If you determine that the volume of air is 0.200 mL at 2.0 °C, when the barometric pressure in the room is 728.0 torr, then how many moles of air are in the U-tube? R= 6.237 x 104 mL torr mol-1-K-1 O a. 8.49 x 10-6 moles O b. 9.38 x 10-4 moles O c. 7.12 x 10-9 moles O d. 6.20 x 10-2 molesarrow_forward(a) Consider a substance where the intermolecular forces hold the molecules in fixed rigid positions. What is the process called when enough heat has been added to the substance so that the molecules begin to flow? (b) Consider a substance where the intermolecular forces hold the molecules in close contact with each other, but the molecules can flow. What is the process called when enough heat has been added to the substance so that the molecules escape each other? (c) Consider a substance where the intermolecular forces hold the molecules in fixed rigid positions. What is the process called when enough heat has been added to the substance so that the molecules can escape each other?arrow_forward
- The strongest intermolecular interactions between pentane (C 5H 12) molecules arise from: O dispersion forces. covalent bond forces. dipole-dipole attraction. hydrogen bonding. ionic interactions. Previousarrow_forwardThe type of interaction formed between carbon tetrachloride and iodine crystalsarrow_forward7. (a) What effect do the polarity, size, and shape of a molecule have on the physical properties of the molecule? (b) How do these factors influence intermolecular forces? K/UT/Iarrow_forward
- Ethanol, C2H5OH, and carbon dioxide, CO2, have approximately the same molecular mass,yet carbon dioxide is a gas at STP and ethanol is a liquid. How do you account for thisdifference in physical property?arrow_forwardIdentify which of these molecules has the highest boiling point and give the reasoning why in terms of intermolecular force. H2O, KCl, CO2.arrow_forwardContinuation of the first question part a, b, and carrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning